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Foreword 

Paul Finsler's set theory is the least explored of all the set 
theories which appeared after the noise and upheaval that followed 
in the wake of Russell's paradox. It remains a storehouse of 
relatively unexplored lines of thought, one of which, the existence of 
non-well-founded sets, has recently attracted new attention. 

Paul Finsler (1894-1970) had a secure reputation as a differential 
geometer when he entered the tumultuous debates over the 
foundations of mathematics. But, if we imagine him simply as a non-
specialist commentator on foundational controversies, it would 
hinder one's grasp of his theory. It is better to think of him as the 
heir to the spirit of Georg Cantor's set theory. Not only did they 
share an uncompromisingly Piatonist philosophy but in other 
respects too Finsler carried on the outlook of Cantor; the distinction 
between sets and classes, for instance, which was developed by 
Finsler, first appears embryonically in Cantor's writings. 

In spite of the fact that many of the papers here are quite old, 
they will also seem fresh and unusual. They contain the thoughts of 
a tragically solitary figure who pondered them intensely and they 
cause one to think about fundamental ideas that may have long been 
taken for granted. 

In entering into the theory one may think of it as an attempt to 
recover the lost paradise of Cantor, the absolute universe of 
mathematics. This is not so much a world of infinite sets, ordinal 
numbers, or topological spaces, though these things all appear within 
it. The real universe is that of pure concepts. That we learn to 
recognize error, that we feel that science is capable of progress, all 
these things are evidence that there is a logical structure to concepts 
which stands above all logical calculi. 

The philosophical sectinn of this book contains the most important 
of Finsler's attempts to develop these ideas. His anticipation of 
Gödel's theorem in [1926a], for example, was an attempt to show that 
logic transcends all formal, deductive systems. As a steadfast 
Piatonist in a period dominated by formalist and nominalistic ideas, 
Finsler embroiled himself in controversies now and then. These are 
of considerable historical interest, but would make little sense to a 
reader who was not already acquainted with the constructive works 
translated here. 

The foundational section contains Finsler's set theory. We believe 
that most of the major arguments made in the theory have been 
included. The theory can be decomposed into the big Finsler theory 
and the little Finsler theory. The little theory involves a graphical, 
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combinatorial attitude toward sets. The non-well-founded sets are its 
most characteristic feature. The big theory is more closely related to 
Finsler's philosophical view: The startling distinction between 
circular and non-circular sets is central to this part of his system. 

What we have called the combinatorial section is an aspect of the 
little theory that can be separated off independently. Believing that 
sets could be viewed as generalized numbers, Finsler introduced 
number theoretic ideas into the study of finite sets. We have omitted 
his exploration of the countable ordinals, Finsler [1951]; and we have 
included an introduction to the combinatorics of finite, non-well-
founded sets. 

The papers of the philosophical and foundational parts are closely 
interwoven. One might misinterpret Finsler set theory were one 
quite unacquainted with his philosophical perspective. According to 
Finsler, the axioms of set theory rest on the actual interconnection of 
concepts not on formal, linguistic foundations. So it is potentially 
misleading to approach them as though they were merely crude 
principles in dire need of formalization. 

The bibliography lists Finsler's pertinent writings, citations of 
them, references made within them, and some closely related 
studies. We have attempted to be complete within these boundries, 
but it is probably wishful thinking to suppose that nothing was 
omitted. We did not attempt to include a complete bibliography on 
non-well founded sets, axioms of set identity, principles of 
completeness in set theory, nor expositions of Platonism in 
mathematics. The bibliography of Aczel [1988] contains some 
references concerning relative consistency and formal systems that 
we have left out; in addition, his bibliography covers non-well-
founded sets extensively. 

Bibliographie citations refer to the publication date and, if 
appropriate, to the page number. Thus Bernays [1922, 15] refers to 
page 15 of a 1922 paper of Bernays listed in the bibliography. 
Finsler's papers which are included in this collection are marked 
within the bibliography with a star. 

Our translation is deliberately not literal. It reflects our 
understanding of Finsler's ideas. We tried to make Finsler's 
intentions as clear as possible to professional mathematicians and 
philosophers. Historians and philologists might sometimes resent the 
freedom we took in rendering Finsler's arguments into 
understandable English. However, if someone wants, for historical or 
other reasons, to understand all the subtle details and references in 
Finsler's writings, he or she has to go back to the German original 
anyway. It should be mentioned that Finsler's marginal notes which 
were included as footnotes in Finsler [1975] have been incorporated 
directly into the text of these translations. 
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Introduction 

Finsler's attitude towards mathematics was Platonistic in a very 
definite sense: He believed in the reality of pure concepts. Together 
they form the purely conceptual realm which encompasses all 
mathematical objects, structures and patterns. This realm exists 
independently of any particular State of human consciousness or 
individual experience. Mathematicians do not invent or construct 
their structures and propositions; they recognize, or discover, how 
these objects in the conceptual realm are interrelated with each 
other. 

It is clear that if there exists a conceptual realm, then it must be 
absolutely consistent; hence existence implies corisistency. This 
implication, however, does not suffice to prove the existence of pure 
concepts. The Platonistic perspective of mathematics can be 
expressed by the converse implication: Consistency implies existence. 
If a concept has been found to be consistent, it can be assumed to 
exist. This means that one can find properties and prove theorems 
about it. 

At first, it may seem unnecessary to ask whether a conceptual 
entity is real, or has an ontological status beyoncl its consistency. 
Exactly this question, however, was at stake during the foundational 
crisis. Many critical thinkers contended that it is precisely this naive 
notion of existence that lies at the heart of foundational problems. 
Lacking a consistent and convincing Piatonist philosophy, Hilbert, 
and many other mathematicians and logicians along with him, 
required that a mathematical object must be expressible in some 
language to really exist. Hilbert's approach to foundations tied 
mathematical existence to symbolic representation, that is to 
linguistic expressions in a strictly formal language. 

Finsler entered the debate at this very point. He maintained that 
consistency is sufficient for the existence of mathematical objects. 
Furthermore, he thought that the antinomies which led to the 
foundational crisis, could be solved without the notion that existence 
is equivalent to formal constructibility. His main intention, visible in 
his writings, was to go back to the very roots of a strictly Platonistic 
interpretation of mathematics as in Cantor's set theory. Hence, 
Finsler's thoughts require a re-examination of basic issues in the 
philosophy of mathematics that are still unsolved, or at least have 
solutions that are not universally accepted. 

Contrary to Cantor, however, Finsler never discussed his 
philosophical perspectives at any length. He assumed them to be self-
explanatory for working mathematicians, that is, he assumed them 
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to be clear from their experience. This might have been the case for 
most mathematicians in the 19^ Century but certainly not for the 
critical way of thinking which emerged from the foundational crisis. 

In this introduction there will be a short reconstruction of 
Finsler's philosophy of mathematics. This is still a largely unexplored 
territory with many open problems. However, it is indispensable for 
an understanding of his purely mathematical research. It can be 
shown that Finsler's point of view is at the very least internally 
consistent, that is, an hypothesis which has to be taken seriously. 
Apart from that, it is inspiring and may start some fruitful future 
research. 

One of the most important distinctions for a Piatonist outlook on 
mathematics is the one between pure concepts and their verbal or 
symbolic representation. The latter is no Substitute for the former: 
An expression merely points to the structure or pattern that it refers 
to. The pure concept is accessible to someone who makes the effort 
to thirik what is meant by such a linguistic expression. In particular, 
the notions of truth and consistency have their primary meaning 
beyond language: Their structure is, in the first place, not a matter 
of linguistic distinctions (for example between object language and 
metalanguage) but of understanding or insight. 

It may be an easy matter to change the notation in which a 
theorem or a definition is expressed. We often translate -
mathematicians are well accustomed to it - a theorem into some 
other language. The theorem itself, however, to which these 
notations or formulations refer, is invariant under merely linguistic 
transformations. The theorem itself cannot be altered. It is 
something which we become distinctly aware of as soon as we really 
think about it. 

The realm of pure concepts is accessible by insight, or pure 
thought (some mathematicians - for example Gödel [1964] - call this 
"mathematical intuition"). This is part of the everyday experience of 
a mathematician, not something mystical. He might prefer to call it 
informal thinking, or more appropriately nonformal, instead. He 
experiences it above all in those moments in which he is not simply 
manipulating symbols or in which his thoughts have not yet been 
symbolically expressed. In particular, logical calculi, like all calculi, 
are manipulative (done by hand or machine) so they cannot capture 
thinking, though they may reflect it. 

What is meant by "informal thinking"? There is a whole ränge of 
conceptual qualities to which this might refer: From a well thought 
out theory to a very vague, or even highly speculative, conjecture 
These individually conceived conceptual structures all have in 
common this nonformal nature. 
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When a mathematician has an idea which gives a new insight 
and is important for his topic of research, then he tries, at least in 
principle, to organize his thoughts into a rigorous, deductive pattern 
of arguments which represents the original nonformal insight as 
closely as possible. This process, although it might include writing 
or symbol manipulation, is conceptual in its essence. Even if one 
goes as far as expressing one's ideas within a strictly formal 
language, the main goal is still to represent the initial idea 
adequately. Such procedures are reasonable ones; it may appear, 
however, as if the clarity and rigor of the final structure is due to its 
formal style of presentation. But how was the clarity and security of 
the intended informal thought patterns achieved? What are the 
criteria by which a mathematician judges the process and final result 
of the formal in comparison with the preformal stage? It is by his or 
her own nonformal insight, or understanding, which started and 
accompanied the whole process of formalization. This shows that the 
nonformal insight is prior, systematically and temporally speaking, 
to the formal one. We would not know what to formalize if it were 
not for the nonformal insight, the pure concept that we are aware of. 
Formalization occurs at the end and not at the heginning of the true 
path to mathematical understanding. 

An opponent of Platonism might argue that preformal insight is 
vague by its very nature and hence cannot really be the source for 
any precise mathematics. Platonists, however, do not argue against 
organizing the initial fuzzy thoughts or intuitions into rigorous 
chains of arguments based on a set of clearly defined assumptions or 
axioms. Furthermore, they are aware of the fact that in writing 
something down, one increasingly clarifies the ideas. But, 
independently of how far one goes in spelling out the details 
symbolically, it is still the nonformal insight which guides writing 
and not the syntactic rules of language. 

Consequently, the final linguistic expression is a mere 
representation of the real thought - and is not to be confused with 
this thought, or concept, itself. If a symbolic expression is given, one 
usually refers to the corresponding thought or concept as its meaning 
or content. 

Let us come back to our primary distinction between conceptual 
content and linguistic expression. From this point of view, the 
distinction between object language and metalanguage (or 
mathematics and metamathematics) presents itself as a projection of 
the former distinction onto the realm of language. Without the 
former distinction, the latter would be artificial. This becomes 
evident if one proceeds to formalize the metalanguage itself. In this 
case, assertions of truth, meaning etc. about an expression in the 
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given formal language (object language) appear just as another 
string of symbols which in itself do not explain themselves but would 
need a meta-metalanguage. In practice one usually uses natural 
language as a metalanguage (including the meta-metalanguage etc.) 
of the given object language. However, natural language is only 
another means of expression which bears neither truth nor meaning 
in itself but asks for some non-linguistic, i.e. conceptual 
Interpretation. Effectively, truth and meaning can only be found in 
the pure conceptual realm if one does not want to fall into an infinite 
regress, that is, an open-ended hierarchy of languages. 

When a Piatonist like Finsler refers to a theory, to mathematical 
objects, or to a set of axioms, he refers to objects in the purely 
conceptual realm. The specification of a formal language has no part 
in his purely mathematical deliberations. Mathematics is concerned 
with relationships between concepts and not with the expression of 
concepts in language. 

Of course, a Piatonist also represents his thoughts with the help 
of languages, but he is well aware of the fact that it is his insight 
which gives meaning to his words and not the other way round. 

What then, one might ask a Piatonist, is the function of 
language? Why use it at all? 

The primary purposes of language in mathematics are 
communication, symbolic computation, and checking. As far as 
mathematical insight goes, there is, strictly speaking, no need for a 
language. Mathematics is not the science of communication of 
structures and patterns, but the science of these structures and 
patterns themselves. However, if one wants to teil someone eise 
about one's discoveries, there is no way around using some kind of 
language to express them. In addition, it is helpful for storing one's 
thoughts (in the form of their symbolic representations) in an 
external memory, or for checking the results by some well-known 
computational methods. 

As for symbolic computation, the need of appropriate notations 
for accurate and efficient symbol manipulations is evident. However, 
the meaning of the symbols and the rules of computation do not 
emerge merely from the rules of the syntax nor the grammar of the 
relevant language. Calculations are based upon a set of rules that 
are implemented in language from a realm outside of it. Thus, the 
results of computation need to be interpreted, apart from merely 
symbolic checks. 

However, if it were not for communication or symbolic 
computation, there would be no necessity for language; mathematical 
insight would still be there without any language. Mathematicians 
might write down their ideas or compute something symbolically in 
order to check the results against some prior knowledge or with 
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acknowledged, secure methods. However, they do not need to write 
their thoughts down in order to widerstand them. If this vvere the 
case in its strictest sense, how could they ever know the meaning of 
what they wrote down? 

We need to be careful not to confuse the complicated ancl 
sometimes rather "irrational" search for conceptual clarity, during 
which we might go through different stages of Computing, writing 
and editing, and the purity of insight that we arrive at in the end. 
We are only concerned here with the latter: The final clear insight. It 
transcends the symbolie patterns, as everyone knows who tries to 
write or read and understand a mathematical paper; it is not enough 
to recognize symbols, to know their syntactical structure, or to be 
able to follow the pattern of a symbolie computation. One needs to 
think and thus grasp the meaning of the thoughts which are to be 
communicated. 

From this point of view it should be clear that most Platonists 
are not interestecl in the fine structure of a language for its own 
sake, but only as a means of expressing pure thoughts. What they 
want to understand are the concepts themselves, not just verbal or 
symbolie representations. 

Let us now turn to Finsler's philosophical papers from the 
Standpoint of an historian, taking leave of the Piatonist point of view. 

Are there Contradictions in Mathematics1? [1925] 

This paper is a preview of Finsler's future research on the 
foundations of mathematics, set theory in particular. To begin with, 
he announces his intention to restore the consistency of mathematics 
by solving, not avoiding, the antinomies. One does not need a new 
logic nor a correction of the old one for this purpose. 

In dealing with what Finsler calls "logical antinomies" (later 
called "semantical antinomies"), i.e. the antinomies of the "liar" and 
the antinomy of finite definability, he introduces the distinetion 
between the explicit and the implicit content of a proposition. The 
"explicit content" refers to the conceptual meaning and the "implicit 
content" to the form of representation. Antinomies arise if these two 
"contents" contradict each other, 

Concerning the "set theoretic antinomies", in particular Russell's 
paradox, Finsler points out that one needs to distinguish between 
satisfiable and unsatisfiable circular definitions. Russell's definition 
of the set of all sets which do not contain themselves is a non-
satisfiable circular definition. Finsler, however, maintains that it is 
not necessary to exclude all circular definitions because of that; they 
are useel even in algebraic equations. 
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Solving the antinomies does not positively solve the problem of a 
consistent foundation of set theory. That task is reserved for the 
paper On the Foundations of Set Theory [1926b] in Part II of this 
book. 

Formal Proofs and Decidability [1926a] 

In this paper Finsler establishes the formal undecidability of a 
proposition which is, however, false. From this he concludes that 
formal consistency does not imply absolute consistency. 

In carrying out his proof, Finsler is not so much concerned with a 
precise definition of a formal system as with the demonstration of the 
Limitation of any kind of symbolic representation. In order to show 
that there are formally undecidable propositions, he refers to the fact 
that any language uses at most countably many symbols, Hence, not 
all propositions of the form: 

a is a transcendental number, 

are expressible, or definable in a language, since there are 
uncountably many transcendental numbers. Consequently, since 
only countably many of these propositions can be formally proved 
within the given language, there must exist propositions of this kind 
which cannot be proved in these terms but which are still true. 

Finsler goes on to present an example of a proposition that is 
formally undecidable yet false. In order to show the latter, he refers 
to the conceptual content of the verbal expression in question. He 
shows that if this conceptual content is taken into account, then the 
formally undecidable proposition turns out to be false. 

One might summarize the argument here as follows: If there is a 
purely conceptual realm, no formal representation can capture it. 

In effect, Finsler's main intention is not to distinguish between 
different kinds of formal systems but between the purely conceptual 
realm and its symbolic ("formal") representation, including the use of 
natural language. This is why he did not need to specify more 
precisely his notions of formal proofs, formal definability, formal 
systems etc.; every thing which is written down is formal in Finsler's 
sense. Hence, for his purpose, there is no need of a general 
reconstruction of language. 

From this, the comparison between Finsler's incompleteness 
argument and Gödel's incompleteness proof [1931] takes on a new 
perspective. There are indeed striking similarities between Finsler's 
and Gödel's approach. However, as Van Heijenoort [1967] remarks 
in his introduction to Finsler's paper, 
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Finsler's conception of formal provability is so profoundly 
different from Gödel's that the affinity between the two 
papers should not be exaggerated. [1967, 438] 

This is certainly true, since Gödel's most profound achievements 
lie in the aceurate definition of the particular formal systems in 
question and the concept of a formal proof within this system. 
Furthermore, he developed what is now called "the arithmetization 
of metamathematics"; for this purpose he gave a precise definition of 
the class of recursive functions. By precisely defining his formal 
methods, he shows, by constructing an example of an undecidable 
Statement, that these formal methods are incomplete. An additional 
metamathematieal argument then shows that this proposition which 
states its own unprovability is, in fact, true, and hence decidable on 
the metamathematieal level. By these means Gödel achieved 
something that Finsler had not done: He proved even for the strictest 
formalist that formal means have their limits (see Dawson [1984] for 
further elaborations on this point). 

Solely from the point of view of mathematics and formal logic, 
Gödel's paper is far more significant than Finsler's. However, 
Finsler's paper goes directly to the heart of the philosophical 
Problem. Finsler is concerned with the fundamental distinetion 
between concepts and their symbolic or verbal representation, not 
with the formally more sophisticated but philosophically limited 
distinetion between metalanguage and object language. One might 
say that the latter distinetion is the projection of the former 
distinetion onto the realm of language. 

Gödel was acutely aware of the objective Piatonist principles 
behind the distinetion between mathematics and metamathematics. 
Later in his life, he expressed strongly Piatonist convictions, for 
example in the essays Russell's mathematical logic [1944] and What 
is Cantor's continuum hypothesis [1964], although he never 
exhibited these in his earlier writings on the foundations of logic. 
Fefermann [1988] argues that Gödel's extreme caution towards the 
power of formalist views of his time urged him to shy away from 
expressing his Piatonist convictions until the Forties. 

The audience Gödel wanted to address consisted of strict 
formalists. Their opinions were the only ones that mattered to him. 
This is why he restricted his analysis to the concepts and methods 
they could aeeept, namely, semantic distinetions, syntactic forms, 
restrictions to particular formal systems, and relative rather than 
absolute consistency. From the perspective of the strict formalist, 
apparently, what Finsler has done is "nonsensical" (see the quotation 
of Gödel in Dawson [1984, 82f.]), since it presupposes something the 
formalists reject: the existence of the purely conceptual realm. For 
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instance, J.C. Webb thinks that the main achievement of the 
mechanization of Finsler's argument by Gödel was to bring "Finsler's 
undecidable sentences down from [the] "rein Gedankliche[n]" and 
put them back into the formal system. In short, he formalized 
Finsler's diagonal argument." [1980, 193], Hence, in his opinion, 
there is no threat to mechanist or finitist convictions any more: 
There is nothing left a machine could not do. Webb misses the point, 
predictably however for a formalist of his persuasion, that this 
projection is not possible without severe philosophical effects, as was 
shown above. 

It is not appropriate, however, to judge Finsler from this 
formalist point of view, even though he himself sometimes thought so 
(cf. Dawson [1984, 81]). Finsler wanted to prove that Platonism is a 
consistent and fruitful philosophical perspective (cf. Finsler [1941a]), 
by developing foundations for set theory in [1926b]. As a 
consequence of the arguments in his paper on Formal Proofs and 
Decidability, he could not accept any kind of formal restrictions 
concerning set theory, because set theory lies at the very heart of the 
foundations of mathematics itself. No formalized theory can ever 
capture foundational conceptions that bear upon all of mathematics. 
To use geometrical terms, formal theories apply only to local 
structures, not to global ones. 

In concluding, it is important to note that no strict formalist will 
ever be convinced by Finsler's paper on Formal Proofs and 
Decidability [1926a], because Finsler assumes something that 
formalists cannot accept: the reality of pure concepts. Finsler did not 
make clear what he meant by that; this certainly limits the 
significance of his paper. However, we cannot exclude the possibility 
that the open questions about the consistency of the Piatonist 
perspective of mathematics and the ontological status of the realm of 
pure concepts may be solved some day. Even Gödel [1964] could not 
say more than Finsler concerning his belief in the objective existence 
of the objects of mathematical intuition. Gödel chose not to refer 
explicitly to the reality of concepts in his purely mathematical 
research, whereas Finsler boldly did so. 

On the Solution of Paradoxes [1927b] 

In this paper Finsler expands on his ideas in the paper [1925] 
concerning the Solution of paradoxes which involve circular 
definitions. 
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Are there Undecidable Statements? [1944] 

Here Finsler compares his approach to incompleteness with 
Gödel's. His arguments are closely related to the "liar". He begins 
with a discussion of this paradox. What then follows is one of 
Finsler's most original contributions to the analysis of the semantic 
paradoxes. Finsler shows that there is an absolutely consistent 
proposition and that there is a Statement which an individual mind 
cannot prove yet has to believe. 

Some choose to call this paper "obvious nonsense" or even "almost 
pathological" without further elaborations (see Dawson [1984, 83]). 
We hope that this translation makes Finsler's arguments more 
accessible and less subject to misunderstandings. 

The paper begins with the fundamental distinction between 
"formal" and "inhaltlich"; this is the distinction between formal 
representation within a symbolic language (or linguistic expression 
in general) and conceptual content. This distinction is instrumental 
in proving that there are, in principle, undecidable statements 
relative to a particular formal system which are nevertheless 
decidable conceptually, that is, decidable in an absolute sense. 

Finsler maintains that it might superficially appear that Gödel 
referred to the conceptual realm when he showed, through a 
metamathematical argument, that there is a Statement unprovable 
within the formal system which is decidable in the metasystem. 
However, if one takes into account that the metasystem can also be 
formalized, Gödel's incompleteness result only shows that there are 
undecidable statements relative to a given formal system. Such a 
system can always be enlarged in order to make the Statement in 
question decidable. But then there will be another undecidable 
Statement in this larger system and so on. 

In view of this, Finsler argues that Gödel did not prove the 
existence of a proposition which is formally undecidable in principle, 
Finsler maintains that if one strictly requires, as a matter of 
principle, the formalization of all arguments involved (including the 
metamathematical ones), then Göclel's result becomes contradictory; 
The formally undecidable Statement becomes formally decidable. 
This contradiction only disappears if one explicitly takes into account 
the conceptual realm, or if one severely restricts the available logical 
tools on the object level. 

One might object that Finsler's arguments are only correct if one 
ignores the distinction between the object level and the metalevel. 
Indeed, this distinction is one of the major achievements of modern 
mathematical logic. However, Finsler never refers to it. Was he not 
aware of it? Or did he simply ignore it? 
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In fact, this distinction is of minor importance within Finsler's 
approach. He was not interested in consistency, completeness, 
decidability, etc. relative to a certain formal system, but in absolute 
consistency, in short, in absolute results. Consequently, he was not 
interested in studying the subtle effects of modifications, restrictions, 
or extensions of various formal systems, but in the analysis of the 
effects of formal representation itself. Hence there was no need for 
him to distinguish between the object language and the meta-
language. This distinction exists only for concepts that are expressed 
in language. 

Gödel's unpublished remark that Finsler's aim, to achieve 
absolute results, is "nonsensical" was at the very least hasty. After 
all, Gödel himself refered from time to time to absolute notions (see 
Dawson [1984] and Fefermann [1988]). 

This paper on absolute decidability shows clearly what Finsler 
wanted: that mathematical thinking not artificially limit itself by 
requiring that formalization be an essential part of mathematical 
existence. 

The discussion of the "liar" in §2 is based upon the distinction 
between the explicit conceptual content of a proposition and its 
implicit assertion that it be true or false. The paradox arises out of 
the fact that the implicit assertion which contradicts the explicit 
assertion, is ignored. 

In §3 Finsler expands the notion of proof so that it includes all 
possible ideal proofs. He can then show that the assumption that 
there are no undecidable statements (i.e. no unsolvable mathematical 
Problems) is absolutely consistent. In particular, he shows that it is 
impossible to prove that a certain proposition is absolutely 
undecidable. From this he deduces, in §4, one of his most original 
results: There is a Statement, which I, myself, cannot prove yet need 
to believe, because it can be proved rigorously by someone eise. 

The Platonistic Standpoint in Mathematics [1956a] 

This paper records Finsler's part of a discussion of foundational 
issues in the Journal Dialectica. It contains a reference to Specker's 
objection which is treated in sections VII and VIII of the introduction 
to the Foundational Part of this book. 
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Platonism After All [1956b] 

As in the paper above, this is Finsler's part of a discussion, not 
all of which is included here (see Wittenberg [1956], Bernays [1956], 
Lorenzen [1956]). It contains mention of Ackermann's set theory 
[1956], which is described in section X of the introduction to the 
Foundational Part of this book. 
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Intrinsic Analysis 
of Antinomies and Self-Reference 

Introduction 

This essay proposes a reconstruction of the ideas lying behind 
Finsler's analysis of antinomical situations. We do not think that it 
is necessary to give a literal account of his argumenta: They can be 
easily followed in his papers. Instead we sought a basis that the 
various arguments might have in common. This essay is self-
contained. It does not depencl on the results of Finsler's analysis but 
gives an independent account of antinomical and self-referential 
situations. 

Since Finsler's first philosophical paper [1925], antinomies have 
been studied in many different ways. Most authors believe that they 
require us to make some revisions either in our language or in our 
ways of thinking (cf. for example Quine [1962]). It is generally 
agreed that there has been no satisfactory Solution to the antinomies; 
those accounts which take place in a formal system seem too 
restrictecl to provide a complete analysis. 

Formal systems are not used in this paper. As Finsler argued so 
forcefully, formal systems might not possess the flexibility necessary 
to deal with the antinomies. We do not want to construct an 
artificial language in order to avoid the antinomies or, as has been 
tried recently by Barwise/Etchemendy [1987] to incorporate the 
antinomies into a formal structure: It is ultimately necessary to 
diagnose the antinomies on their own ground. We should make a 
self-contained, or intrinsic analysis which does not introduce 
assumptions foreign to the problem but focuses on the realm from 
which the antinomies arise. In particular, no new conceptions of 
trut h nnr theories about the limitation of human thought are needccl. 
We shall use common logic, the traditional distinction between 
symbols and their meaning, as well as the distinction between 
conceptual and perceptual facts. 

Summary 

Antinomies involve perceptually or conceptually distinct objects 
which become identified during a line of thought, thus producing a 
contradiction. The intrinsic analysis keeps the distinct objects 
separate while allowing one to see how they can become identified. 
The analysis of antinomies calls for distinctions that are present in 
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self-referential situations in general. They are easily overlooked, 
however, if no contradiction arises. - Semantic and logical 
antinomies have a similar pattern, though they operate in different 
realms, Their emergence gives insight into the formation and 
ontological status of concepts. 

Part I: Antinomies 

1. On the distinction betuieen semantic and logical antinomies 

The distinction between semantic and logical antinomies goes 
back to Ramsey [1926], Semantic antinomies involve explicit 
reference to symbols or sentences, that is, both linguistic expressions 
and their meanings are present. Logical antinomies, however, 
involve only concepts and conceptual relations from mathematics and 
logic. 

If we formalize the semantics as in model theory, the real 
distinction between the semantic and logical antinomies is lost. We 
will not treat these antinomies formally here. In effect, we claim 
that mathematical logic does not contribute to the Solution of the 
antinomies. This does not mean that mathematical logic has not 
been enormously fructified through the analysis of the antinomies. 
It is to say, however, that there can be no comprehensive account 
within formal logic alone of how and why the antinomies arise. 

An important result of our analysis is, however, that from a 
certain point of view, the structure of semantic and logical 
antinomies tum out to be the same. This point of view varies a great 
deal from mathematical logic. It is grounded in a detailed analysis of 
self-reference which lies at the heart of the antinomies. 

2. Antinomies, contradictions, distinctions 

13y an anlinomy we mean an argument which convincingly leads 
to a contradiction. By a contradiction we mean the conjunction of two 
mutually negated propositions. One proposition asserts that .v has 
the property E and the other proposition asserts that x does not 
possess the property E : 

(C) (.v is E) and (x is non-E). 
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Surely we can write down such contra die tions, as for example: 

(12 is divisible by 3) and (12 is not divisible by 3); 

but there has not been found any actual objects for which there is a 
property E such that (C) holds. Of course, the number 12 is no such 
object. 

Evidently, to claim, that a house having red and green spots is 
both red and non-red does not constitute a contradiction in the sense 
defined above. 

An antinomy, in its strictest sense, is not an argument that leads 
just to the conjunction of two mutually negated assertions, but it 
establishes the equivalence of two such opposite assertions. 
Therefore, an antinomy establishes the conjunction of two converse 
implications: 

(x is E -» x is non-E) and (x is non-Z? -» x is E). 

In contrast to these notions, distinetions arise from Observation. 
In particular, two objects x and x' are called distinguishable in case 
they are distinet and for some property E the following holds: 

(x is E) and (x' is non-E). 

For example, circles and polygons are distinguishable objects by 
virtue of the latter possessing corners. 

In some German philosophical literature (cf. for example Hösle 
[1986], Wandschneider [1993]) the terms "analytischer Widerspruch" 
and "pragmatischer Widerspruch" are used for contradictions and 
distinetions respectively. We shall follow this tradition and 
introduce the terms "analytical contradiction" and "pragmatic 
contradiction" for contradictions or distinetions respectively. If 
"contradiction" has no qualifier, then it stands for "analytical 
contradiction". 

3. Derivation. of a semantic antinomy 

Let us turn now to a specific semantic antinomy. The following 
antinomy is a slightly modified version of Carnap's [1934] "liar cycle." 

(1) a: b is true. 
b: a is not true. 

The traditional argument goes like this: In case a is true, then b 
holds. From this it follows that a fails - contradicting the 
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assumption. On the other hand, in case a is false, then b fails. This 
makes a true - another contradiction. Thus we have an antinomy, 
the equivalence of two mutually negated assertions. Without doubt, 
the conclusion of this argument is a contradiction. An intrinsic 
diagnosis must by its very nature take hold of the course of the 
argument itself; it must reveal the root cause of the contradiction, 
not just a way to avoid it. 

4. Diagnosis of a semantic antinomy 

The argument deriving a contradiction in Carnap's Liar cycle 
begins with the first line of (1). There is a proposition a, which 
involves a sentence b in the second line; b in turn mentions a. For 
the derivation of the contradiction it is necessary that the a in the 
first line is identified with the a in the second line. Without this 
identification there would be no contradiction. Now, is this 
identification proper? The only essential property of a present in the 
second line is that a is the subject of a proposition. In the first line a 
does not stand for the subject of the proposition, but represents the 
whole proposition. Thus, the two o's have a different meaning.-
Hence the two objects, called "a", in the first and the second line of 
(1) serve a different purpose and need to be distinguished clearly. 
Since for b we may argue along similar lines, we are presented with 
a new version of (1) that makes this distinction explicit: 

(1*) a(l): is true. 
6(2): a(2) is not true. 

By strictly following the principle of identity, which says that 
only objects possessing identical properties may be identified, the 
contradiction evaporates. Only when aw = a(2) and 6(1) = 6(2) are 
assumed, ignoring the proper distinctions, can a contradiction 
result.1 

The common form of the Liar is: "This sentence is not true." 
Here "this sentence" is the subject of the proposition "This sentence 
is not true" and refers to this proposition as a whole. If we 
abbreviate "this sentence" by "s" we can represent the füll structure 
of "This sentence is not true" by: 

(2) s: s is not true. 

1 The essential features of this diagnosis where first pointed out to me by Werner A. 
Moser. 
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Here too we have to distinguish between the s before the colon 
and the s after the colon. The latter represents the subject of a 
proposition while the former stands for the proposition itself. Hence 
it is necessary to indicate the different meanings by different 
symbols as before: 

(2') s(2): s(1) is not true. 

Without identifiying s(1) and s(2) no contradiction results.2 

5. Some objections 

One could argue that s(1) designates not only the subject of the 
proposition s(2) but also this proposition itself. Hence s(1) and s(2) are 
the same. But in this case, the meaning of sm (as well as the 
meaning of s(2)) would not be not unique any more. Namely s(l) has 
two mutually incompatible meanings: On the one hand s(1) is the 
subject of a proposition and stands on that account for a part of the 
proposition and therefore is distinguished from s(2>. On the other 
hand, s(1) stands for the whole proposition and in this role is identical 
with s(2). 

If we were to assume, in order to identify s(1) and s(2), that s(1) 

represents simultaneously the subject of the proposition and the 
whole proposition, then s(2) must also be given a new meaning. In 
this case, s(2) is supposed to represent not just a proposition with a 
subject and a predicate, as before, but also this subject itself. In 
other words, s(2) is a circular proposition. Obviously, this throws us 
back into the Situation of (2), taking s to signify the proposition as 
well as the subject of this proposition. 

A moment's thought shows that this interpretation is incomplete. 
We would have to take into account the new Situation that arises 
from the identification of s(1) and s(2), Now, the s in front of the colon 
does not only represent the proposition and its subject, as does the s 
that follows the colon, but also a proposition about a proposition. 
This argument shows that we have to write: 

2 
Goddard/Johnston [1983] argue along somewhat similar lines. They realize tha t in 

order to derive the antmomy, one has to assume the identity of two structurally distinct 
par ts . Because they work within predicate calculus, the scope of their analysis is more 
limited than ours: an intrinsic analysis demands tha t the na tu re of the predicates be 
analyzed; this goes beyond predicate calculus. Hence, Goddard/Johnston cannot explain 
why and how but only that differentiations have to be made in order to derive a 
contradiction. 
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(3) s<2>: [sW: s<» is not true]. 

But our analysis above shows that this representation is not 
sufficiently precise, because the two instances of s(1) are distinct and 
therefore cannot have the same meaning. When we apply the same 
procedure that was used with (2) to the expression within the 
brackets of (3), we arrive at 

(3') s<3>: [s<2>: is not true]. 

As in (2'), this expression does not give rise to a contradiction, as 
long as we do not ignore the distinction between the increasingly 
numerous instances of s. 

The transition from (2') to (3) arises from the desire to eliminate 
any distinction between s(1) and s{2). So we would have to give ,s(1) an 
additional property that naturally belongs to s(2) in order to blur the 
distinction between them. But this effort does not succeed. Since 
the main structure of (2) is represented within (3), we must 
Substitute (3') for (3). Continuing this process we would have to give 
s(2) the properties of s(3). In turn this gives a new expression s(4) that 
has an additional property not possessed by s(3), and so on. 

(33') s(3): [s(2): s« is not true]. 
(34') s<4>: [s(3): [s<2>: s(1) is not true]]. 

(3n') s™: [s(n-_1): [,..[s<2>: s« is not true]...]]. 

The infinite regress never forces us to the the conclusion that 
there is not really any distinction between s{h) and s(k+ for any k = 
1, 2, 3, ... . The only way that a contradiction can ever appear is for 
us to assume, contrary to the arguments given above, that 

S ( D = S(2> = ___ - g(n) - ___ _ 

The contradiction cannot be constructed unless we ignore a factual 
distinction. 

It is often argued that the expression 

(22) s: s is not true; 

lends itself to an iteration if we Substitute for s the proposition: s is 
not true. This substitution gives the sequence that follows, 
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(23) s: [s is not true] is not true; 

(2n) s: [...[[s is not true] is not true]...] is not true. 

In order to make the different steps of this iteration more 
explicit, we write: 

(32) s{2): s(1) is not true. 
(33) s(3): [s(1) is not true] is not true. 
(34) s(4): [[s(1)is not true] is not true] is not true. 

(3 ) s ^ : [[...[[s« is not true] is not true]...] is not true] is not t rue 

In iterating (22) it seems at first that we do not neecl to add any 
new property to this expression but just carry out what is already 
present. Hence (22) and (2n) would be equivalent in spite of the fact 
that s in (22) has a simple subject and s in (2n) has a much more 
complicated one. Obviously, this leads to a distinction, or "pragmatic 
contradiction". 

We must observe, however, that the equivalence of (22) and (2n) 
can only be established if we let s(1)= s(2) = ... = s(n) in (32) to (3n), for all 
n. In fact, the different s's do not merely indicate different steps of 
the iteration but signify, according to our previous analysis, different 
meanings as well. This has already been shown for (32) in section 4. 

Now eonsider the iteration itself. Each step is carried out by 
substituting s(1) for s(2). This definitely changes the meanings of the s 
in front of the colon with every step. In particular, the transition 
from (32) to (33) rests upon the fact that the s in front of the colon no 
longer signifies a proposition, but a proposition about a proposition. 

What looks at first like an identification of s(1) with s{2) turns out 
to be the cause for a shift in the meanings of the s's in front of the 
colon. In fact, the different meanings of s(1) and s(2) are the driving 
forces of the iteration. Only by giving s(1) the meaning of s{2) can the 
iteration be started and kept going. Therefore, without taking into 
account these different meanings, there would be no iteration at all. 
We woulcl be stuck with (22) and could never arrive at (2n). If we 
deny the different meanings of the s's before and after the colon, 



Ziegler: Intrinsic Analysis 21 

then we have no complete argument to actually carry out the 
iteration. Denying these different meanings and producing the 
iteration are incompatible: They lead to inconsistent arguments. 

The essence of the intrinsic analysis of the Liar antinomy 
consists in pointing out that distinguishable objects in the sense of 
section 2 are identified and hence have no identity as something 
individual. Not observing this difference is an offense against the 
principle of identity. Therefore, what is real are only the given 
distinct objects: The antinomy is not a fact of reality. The antinomy 
is created by the one who derives a contradiction while projecting 
distinguishable objects into the conceptual realm. 

6. Epistemological analysis of a semantic antinomy 

In this section it will be shown that a thorough analysis of the 
argument leading to a contradiction from the Liar cycle (1) includes 
epistemological categories. It will turn out that the paradoxer, 
namely the one who attempts to derive a contradiction, actually does 
differentiate between the different meanings of a and b in the first 
and the second line of (1). This differentiation is forced upon him. 
But later in the argument he chooses to ignore this distinetion. The 
irony of the Situation is that the paradoxer observes this distinetion 
even while reasoning as though the two different uses of the 
Parameters are identical. In particular, his Observation requires the 
actual pereeption of concrete objects.3 

(1) a: b is true. 
b: a is not true. 

The assertion, a is true, i. e., [b is true] is true, can be applied to 
the second line of (1) if and only if we take it in the sense: a is 
actually true. Otherwise it would be an abstract proposition with no 
consequences for the b in the second line. Hence the a in the first 
line should be taken as an actual proposition about b: b is true. The 
concrete inspection of b in the second line shows that a is merely the 
subject of a proposition. The second line, standing alone, does not 
reveal that a is an actual proposition about something. As soon as 
the a in the first line and the a in the second line are identified, the 

3 According to Barwise/Etchemendy [1987] this means tha t the paradoxer has to take 
into account the Situation the proposition is about, namely itself, t aken as a concrete 
object of the world: a linguistic expression. Situations may include propositions, but are 
not propositions themselves. They are not purely conceptual bu t involve some kind of 
pereeption. 
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observecl distinction is lost. (The same reasoning applies vvhen a is 
taken to be not true.)4 

An analysis which relates the first and the second line of the Liar 
cycle (1) has to take into account the different significance of the two 
instances of a, likewise for b. This different significance is, in effect, 
conceptual, but its conception involves a perceptual component. Our 
analysis cannot be purely conceptual in the sense that although the 
result might be purely conceptual, the object of our analysis is not. 

The fundamental contrast appearing here is not that of two 
contradictory assertions but rather a pair of distinguishable objects 
in the sense of section 2. In effect, if the two cüstinguishable objects 
are projected into the purely conceptual realm, and if we also ignore 
the principle of identity, a contradiction does arise. More precisely, 
the a in the first line of the Liar cycle (1), called a(1), has the 
property, say E, not only to be a proposition, but to be an actual true 
proposition about the b in the second line. In short: a(1) is E. On the 
other hand, the a in the second line, called a(2), is merely the subject 
of a proposition not having a concrete significance. To sum it up: (a(1) 

is E) and (a(2) is non-E). This conjunction of two propositions has the 
form of a distinction in the sense of section 2. The identification of a(1) 

with a(2), namely the identification of the a with concrete signficance, 
called a(1), with the a with merely conceptual significance, called a(2), 
leads to a contradiction: (a is E) and (a is non-E). 

We conclude that the antinomy, namely the argument leading to 
a contradiction, starts from a projection of two distinguishable 
objects (pragmatic contradiction) into the conceptual realm, that is, 
into the realm of logic. In the next step one neglects the distinction 
just made and thus ignores the principle of identity. The result is an 
analytic contradiction. 

Let us discuss from this perspective Finsler's [1925] favorite 
example of a semantic antinomy. Consider a box with the following 
in scription: 

The smallest natural number 
which is not specified in this box. 

4 Again, in the terms of the analysis of Barwise/Etchemendy [1987] the above argument 
amounts to the following: the paradoxer does in fact suppose a part icular Situation for 
"o" in the first line in tha t he applies this proposition to the second line. But later in his 
argument , the paradoxer acts as if he never made this supposition. 
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Which is this smallest number? There are only finite many 
numbers specified in the box. Hence there must be a smallest. 
Assume it is the number 4. But then 4 is specified in the box - hence 
it cannot be equal to 4. Conversely, assume this number is not equal 
to 4 but, say, equal to 5. It follows that 5 is not, the smallest number 
which is not specified in the box. This gives a true antinomy: If the 
smallest number which is not specified in the box, call it x, is equal to 
4, then it is not equal to 4. Conversely, if x is not equal to 4, then it 
is equal to 4. 

Let "T' denote "specified on the blackboard" and let "a" denote 
"the smallest natural number >3". Then the propositions 

b: a is not-T, 
a: b is T, 

have the same structure as the antinomy above. What is relevant for 
the existence of this smallest number >3 is the fact that it is written 
in the box, i. e. has the property T. Everything which is not 
explicitly written in the box is irrelevant. This means that the 
corresponding proposition is not true. Hence we conclude that this 
antinomy has the same structure as (1) if we Substitute "T" by "true". 
Conseqently, the same method of analysis applies. 

In short, the antinomy is produced by the pragmatic 
contradiction between the propositional content of "b: a is not T' and 
the fact that b is written in the box. Identifying these two instances 
of b produces an analytical contradiction. 

7. A distinction without antinomical character 

The ideas introduced to analyze the Liar are of importance also 
for assertions without antinomical character but which nevertheless 
are problematic. Consider the assertion, sometimes called the truth-
teller: 

(4) s: s is true. 

No one finds a contradiction here: (4) is not an antinomy. And yet 
here too we must distinguish between the s in front of the colon and 
that which follows it. The latter, called s(1), is merely the subject of a 
proposition, and the former, called s{2\ stands for a concrete 
proposition: 

(4') s(2): S(D i s true. 
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In this case, the identification of s(1) with s{2) does not lead 
without further ado to a contradiction, but even so is as unjustified 
as in the antinomical form (2'). The previous discussion of antinomies 
requires ideas which are forced upon us by consideration of non-
antinomical statements as well. The antinomies serve to introduce 
these ideas to our attention. It is unnecessary for us to develop 
strategies for escaping from antinomies. After all, the corresponding 
contradictions only arise out of our neglect of the above mentioned 
distinctions. The antinomical result deduced from the Liar Situation 
is our creation, not something alien we have to defend against. 

Clearly, s(1) and s{2) are distinguishable objects in the sense of 
section 2. By projecting s(1) and s(2) into the conceptual realm and 
simultaneously identifying them a contradiction arises, even with 
the truth-teller (4'). The truth-teller is, strictly speaking, not 
antinomical, but one still has to deal with distinguishable objects. 

Part II: Self-reference 

8. Self-referential assertions 

The crucial problem presented to us by the antinomies is the 
structure of self-reference.5 

The common feature of (2) and (4) that makes necessary the 
transition to (2') and (4') respectively is the self-referential structure 
of the corresponding assertions. Let E be any property. An assertion 
is called self-referential, if it has the following structure: 

(S) s: s is E. 

An essential ingredient of a self-referential assertion is a 
proposition whose subject is this proposition itself. A proposition 
standing alone cannot be self-referential.6 It is essential here that 
part of the proposition, namely the subject, is associated with 
something outside the proposition. We are lecl beyond the 
proposition itself, understood as a mere conceptual entity, to the 

5 This point of view has also been put forward by Kesselring [1984: 104f.]. 

6 This is to say tha t a proposition without any indication to its appropriate Situation, or 
concrete significance, cannot be self-referential. In part icular , the Situation of self-
referential assertions include their own linguistic expression (cf. Barwise/Etchemendy 
[1987: Chapter 8 and 9]). 
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Situation the proposition is about. The reasoning used to analyze the 
Liar applies here too; we must pass from (S) to 

(S') s®: s^isE. 

Döing so, the self-referential structure is apparently lost. This 
means nothing more than that the thing that refers and the thing 
that is referred to are not the same. In reality, sw and s{2) are not 
arbitrarily different things, but they are different representations of 
one and the same thing in reality which comprizes both in a union, 
building a whole. 

Consider the following example: 

(5) a: a is an English sentence. 

In this case one has to distinguish three things. First, the 
interior "a" is the subject of a proposition which claims about a that it 
is an English sentence. Second, the exterior "a" designates this 
proposition. Third there is the claim that a is, in fact, an English 
sentence. Hence we are dealing with the question of whether the 
predicate expressed about a applies to a taken as the whole, that is, 
whether the conceptual content of the proposition applies to its 
linguistic representation. The concrete union of the conceptual 
content of this proposition with its actual linguistic representation is 
the same union spoken of in (S') above in greater generality. 

This concrete union does not arise, if the conceptual content of 
the proposition does not apply to its linguistic representation, as for 
example in: 

(6) a: a is a Chinese sentence. 

However, both expressions (5) and (6) lead to a contradiction as 
before, if we ignore the different meanings of the interior "a" and the 
exterior "a". In particular, a symbol having distinct concrete 
significances is projected into the conceptual realm, leading to a 
contradiction (cf. section 6 and 7). The contradiction is more obvious 
in case of (6), since the exterior "a" quite clearly is not a Chinese 
sentence, but in principle the analysis of (5) and (6) is the same as 
before. 

Note that (6) is merely self-contradictory in the sense that its 
propositional content does not apply to its linguistic expression: But 
it is not antinomical, since we cannot derive a logical equivalence of 
mutually negated propositions. 
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Consider now the self-referential Statement (S) where self-
reference itself is denied: 

(7) s: s is not self-referential. 

The expression (7) arises from (S) if we replace the property E by 
the negation of self-reference. The contradictory character of (7) is 
not surprising, because the structure of this assertion is actually self-
referential while that is denied by the conceptual content of the 
proposition. 

In (6) and (7) one has to observe two overlapping contrasts. First, 
there is the now familiar contrast between the interior and the 
exterior "a" or "s" respectively. They are distinguishable objects in 
the sense of section 2. Another contrast, however makes itself 
manifest in these examples. When the reader understands the 
proposition involved in (6) and (7) he notices a conflict between their 
conceptual content (meaning) and their very form (linguistic 
expression). The conflict in (6) arises out of the accident of what 
language is used. One can construct other such conflicts involving 
accidents of representation, such as: 

a: a has fewer than four words. 

The conflict appearing in (7) lies in the fact that the conceptual 
content of the proposition is at variance with the structure of the 
linguistic expression that carries it. 

Note that this contrast between the conceptual content and the 
linguistic expression of a self-referential assertion also involves two 
distinguishable objects in the sense of section 2. The projection of this 
contrast into the conceptual realm leads to a contradiction in both 
cases (6) and (7). This is a common property of all self-referential 
assertions of the form (S). 

According to Barwise/Etchemendy [1987] one may say that the 
following self-referential assertion, 

(8) s: s is self-referential, 

signifies its own Situation. It is not only a proposition, but a 
descriptive proposition about a Situation which it explicitly refers to, 
namely its own linguistic occurrence. However, this is also true for 
(6) and (7). The Situation of (8) consists only of facts, in particular, of 
linguistic expressions. In this case, the propositional content, in fact, 
applies to the Situation it is about. Hence, in this sense, (8) is true. 
As we shall see more clearly in the next section, (6) and (7) are false. 

Note that self-referential assertions are not propositions in the 
usual sense but linguistic expressions of a certain structure which 
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relate a propositional content with its own linguistic expression. We 
may call them self-descriptive propositions. In other words, they are 
propositions which are related uniquely to a specific Situation, 
namely the Situation which includes their linguistic expression. (For 
a more general definition of descriptive propositions in contrast to 
conceptual propositions, see section 9.) 

The relation of self-referential assertions to their own linguistic 
expression cannot be made explicit in all its implications by any 
symbolic notation. For example, using the same symbols in (8) for 
both instances of s before and after the colon is misleading, but 
expresses the self-referential structure of (8) in a most natural way. 
Introducing different symbols for these s's seems to destroy just this 
self-referential structure. The only sensible thing to do is to combine 
these two notions. This amounts to treating the two instances of s as 
different (more precisely, distinguishable) but also as equal in the 
sense that they are both manifestations of one and the same whole. 

Ignoring these distinctions does no harm in dealing with self-
referential assertions which are not antinomical.7 We just loose 
some aspects which might be important to keep in mind if we want to 
understand the nature of self-reference in a deeper sense. 

9. The structure of self-referential assertions 

The considerations of the last section make us aware of the basic 
difference between the labeling part and the propositional part of a 
self-referential assertion. In particular, we have the linguistic 
expression and its intended conceptual content. Self-reference is 
only possible if the thing which refers (the referrer) and the thing 
which is referred to (the referent) are different. Otherwise there 
would be no reference at all, only monotonous identity. For instance, 
in (5), the conceptual content of the proposition and the linguistic 
expression are both representations of one and the same whole, 
namely the object under consideration. In effect, what has to be 
referred to each other are two representations of one and the same 
thing. 

7 
There even are consistent formal theories which include self-referential s t ructures 

which do not take explicitly into account all our distinctions. However, they must in one 
way or the other cope with the self-referential antinomies. See Barwise/Etchemendy 
[1987] for a particularly elegant t rea tment of self-referential assertions and their model 
theory and Aczel [1988] for the mathematics of self-referential (i.e. non-well-founded) 
sets. For a characterization of what makes a self-referential assertion antinomical, see 
Wandschneider [1993, §§ 3 and 4], 
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These two representations are in (5), and a fortiori in (S), in a 
special relationship. Namely, the actual sentence has a structure 
corresponding to the conceptual content of the proposition. It is, so 
to speak, an instance of the latter. 

The structure of self-referential assertions is such that they are 
not propositions in the ordinary sense, where one has only to deal 
with conceptual entities; but they relate two representations of one 
thing, namely the actual instance and its corresponding conceptual 
structure. Propositions which connect concepts without refering to 
their instances will be called conceptual propositions. For example, 
the following proposition is conceptual: 12 is divisible by 3. As soon 
as we distinguish between two different representation of an object, 
we leave the purely logical realm. Because, logic deals only with 
patterns of representation, that is, possible instances and not, as it is 
the case here, with actual representations (or instances). 

Hence, self-referential assertions are not part of pure logic: They 
are not conceptual propositions but so-called descriptive propositions. 
It is no wonder then that purely mathematical accounts of self-
reference are wanting in one way or the other. 

Descriptive propositions deal with the question of whether an 
observed real object is an instance of a given concept or not. In the 
first case one says that the concept applies to this object, or that this 
object is an instance or an exemplification of this concept. Self-
referential assertions are descriptive propositions about their own 
linguistic expression, disguised as conceptual propositions about 
themselves. In order to make this more explicit, we consider the 
following new notation. 

If we denote by "A" a concept and by "a" any of its instances, then 
we might use an arrowhead, >, for expressing the fact that a is an 
instance of A in the following way: A > a. This expression signifies 
the union between A and a which is neither identical with the 
concept A nor its instance a. Consider the following example for this 
structure: Take K as the concept of the sphere in 3-space. If k is a 
free Aying soap-bubble, then we might write: K > k. Be prepared to 
differentiate clearly between K and k. The assertion K > k means 
that an actual thing, called k, is an instance of the concept K. In this 
case, since K applies in reality to k, we might speak of the concrete 
union of K and k, constituting a whole. 

Let us return to self-referential assertions. Their basic structure 
is expressed by 

(S) s: s is E, 

where E is any property which can reasonably be applied to a 
linguistic expression. Our earlier analysis shows that (S) is a seif-
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descriptive proposition. In other words, (S) is a descriptive 
proposition such that its propositional content applies to its linguistic 
expression. Using our new arrowhead notation, this can be 
expressed by 

E > "s is E". 

Conversely, any descriptive proposition which has this structure 
can be expressed as a self-referential assertion. 

The expression on the left side of > always denotes a conceptual 
entity (in this case carrying propositional content); the expression on 
the right side of > denotes a concrete object (in this case a linguistic 
expression) which is an instance of the conceptual content on the left 
side. 

We can still go one step further in playing with the expression of 
self-reference. The following expression mentions self-reference and 
also is self-referential according to the definition in section 8. Its 
structure is an instance of its own propositional content: 

(8) s: s is self-referential. 

Now, "self-referential" can be replaced by "refers to s", giving 

(9) s: s refers to s. 

Once again the method of intrinsic analysis leads us to 
discriminate among the instances of s: Both occurrences of s on the 
right side of the colon are ingredients of the propositional part, they 
constitute its subject and predicate. The s preceding the colon 
designates this proposition itself. Hence we have 

(9') s: s(1) refers to s{2). 

It should be clear from the intrinsic analysis of (9) that its 
propositional part, namely 

s refers to s 

is not a purely conceptual proposition. Because, in this case, the 
referrer and the referent would need to be conceptually different in 
order to express a relation and not a monotonous identity. In fact, 
this proposition is descriptive, namely self-descriptive, and it 
expresses the fact that a concept s refers to an instance of it, so using 
the arrowhead notation: s > s. In addition, according to (9), the very 
structure of s expresses self-reference. In other words, s also 
expresses the concrete union, or whole, of its constituent parts which 
consists of s taken as a conceptual entity (which is in this case the 
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concept of self-referential assertions) and s as a concrete instance of 
its propositional content. Hence our symbolic notation produces 

Once again, the self-referential structure emerges instantly from 
(9) and (10), as long as we do not use different symbols for the three 
instances of s. But our previous analysis shows that the exploration 
of the fine structure of this self-referential assertion forces 
differentiations upon us which cannot be ignored unless we forgo, in 
effect, the very nature of self-reference. From this follows that we 
cannot stick to (10) but must introduce the differentiation used in 
(9'), giving 

In this expression, s(1) corresponds to the s(1) in (9') and represents 
the conceptual content of the propositional part of this self-
referential structure. The concrete instance entering into this 
expression is represented by s{2). The fact that s(2) is a concrete 
instance of s(1) makes s a descriptive proposition, more precisely, a 
self-descriptive proposition. 

The symbols s(1), s(2), s do not denote arbitrarily different things. 
We introduced these different symbols to aid our analysis. These 
three symbols refer to different aspects of one and the same whole, 
i.e., one and the same real object, namely the thing under 
consideration. In (10') we have a self-referential assertion with the 
property that its propositional content states exactly its own self-
referential structure. Symbolically, s expresses the fact that it is 
self-referential, namely that s(1) applies to s(2), 

It is now easy to represent in our new arrowhead notation a self-
referential assertion which is contradictory: 

(11) s: s > non-s, 

(11) is equivalent to (7) and arises from (10) by negating the fact 
that s, taken as a self-referential assertion, is an instance of its 
conceptual content. In effect, the descriptive proposition in (11) 
denies explicitly its very self-referential structure. Therefore, the 
conceptual content of this proposition is incompatible with its actual 
structure expressed linguistically. In other words, (11) is structurally 
self-descriptive but the concrete instance does not match the 
conceptual content of the descriptive proposition. Hence, in this 
sense, (11), taken as a self-descriptive proposition, is false. 

This analysis of contradictory self-referential structures is what 
Finsler [1925] and [1944, §2] might have had in mind, saying, that 

(10) s: s > s. 

(10') s: s(l) > s(2). 
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contradictory assertions of the form (11) are "solvable". In particular, 
he said that in every such expression the explicit conceptual content 
contradicts its (conceptually) implicit linguistic structure. However, 
from our point of view, there is no prima facie contradiction, but 
distinguishable objects in the sense of section 2 which produce a 
contradiction only if projected into the conceptual realm.8 

10. Self-referential concepts 

In an intrinsic analysis we are aware of our patterns of thought. 
We recognize different aspects of self-referential assertions as our 
mind shifts back and forth between the linguistic expression and its 
propositional content. This makes us aware that self-referential 
assertions are disguised as purely conceptual propositions: But we 
know, in fact, from observing our own thinking, that they are partly 
descriptive. 

Prima facie, a self-referential assertion appears as an 
unstructured unity. Our analysis finds distinct components in this 
assertion. Our reflection discovers a complex unity comprising the 
components which our analysis has identified. 

A severe challenge lies waiting to test the method of intrinsic 
analysis. There are, after all, the logical antinomies which seem to 
involve, according to section 1, only concepts and conceptual 
relations from mathematics and logic. The intrinsic analysis of self-
referential assertions observed the mind at work, and identified a 
conceptual component (propositional content) as well as a perceptual 
component (linguistic expression). In all examples of antinomies 
discussed so far, the perceptual component is drawn on sense-
perception. For instance, the left-hand labels in example (1) are 
visually associated with the subject of the proposition on the right 
side. Clearly, perception is at work here. 

The logical antinomies, however, challenge us by lacking, prima 
facie, a perceptual component. They seem to be purely conceptual. 
But that does not mean, however, that an intrinsic analysis of logical 
antinomies is confined to purely deductive reasoning. 

g 
There is a remarkable similarity between Finsler 's t r ea tmen t of the Liar-type 

antinomies and Buridan's ideas about self-reference (cf. Hughes [1982]). Buridan too 
does work within the realm of classical (absolute) logic and is convinced tha t every 
proposition is either t rue or false. Concerning the Liar, he comes to the conclusion, t ha t 
it must be false. His a rgument rests upon the distinction between a sentence as a 
linguistic object and a sentence as a carrier of conceptual meaning. In fact, our analysis 
shows tha t this dinstinction is instrumental for the intrinsic diagnosis of self-referential 
assertions. Buridan was apparently aware of this fact. 
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The world of concepts can be taken as a landscape whose forms 
and relationships stand available for recognition (conception). It is 
true, we ourselves participate more in this recognition than in the 
perception of sensory objects. But, nevertheless, we Single out 
concepts as objects of our attention, observe distinctions and 
relations, as we would with objects of the sensory world. However, 
concepts do not appear to us in their essential structure without 
voluntary thought-activity. They do not drop into our consciousness 
by themselves. Hence we recognize a part of this landscape only as 
we are actually thinking. 

It is important to notice here, that we are now dealing 
exclusively with concepts and not with assertions, sentences, etc. 
That is, the subjects and predicates of all propositions we are going 
to analyze are themselves conceptual. 

Let us begin with an analysis of self-referential concepts, called 
predicative concepts. We follow Greiling/Nelson [1908] in their 
account of an idea going back to Russell (cf. also Finsler [1927b]). 

Every concept can either be applied to itself or not. The 
former shall be called "predicative", the latter 
"impredicative". (Examples of predicative concepts arer: 
conceivable, abstract, consistent, invariant, as well as all 
other concepts which denote essential properties for the 
concepts themselves; In addition, many negative concepts 
are predicative, as for example, non-human, etc. The 
following are impredicative concepts: virtuous, green, and 
most of the everyday concepts.)9 

Let us look at one of these predicative concepts more closely. The 
concept of abstractness means nothing eise than the essential 
structure of all abstract objects. Let us call this structure "SA". 
Hence SA is the essential structure of all concepts which have the 
property of being abstract. Let us now Single out a specific abstract 
concept as an object of our attention; the concept of the Riemann 
integral from calculus will do nicely. The Riemann integral, let us 
call it S{t), has an abstract structure, is an instance of SA, therefore in 
the light of our previous considerations, we have 

(12) SA > 5«. 

On the left hand side is a conceptual category as before, namely 
the essential structure of abstractness, SA. On the right hand side, 
however, there is no longer an object of the sensory world, as the 

9 Greiling/Nelson [1908: 60f.]. Translation by R. Ziegler/D. Booth 



Ziegler: Intrinsic Analysis 33 

linguistic expression in (10'), but a conceptual entity. This conceptual 
entity, S®, stands as a specific instance of the conceptual category SA 
in the same manner as linguistic expressions were specific instances 
in our earlier analysis of self-referential assertions. In other words, 
(12) is a descriptive proposition about the specific concept S(i). 

To obtain a self-referential concept of the type treated by 
Greiling/Nelson, we must now take SA to be an instance of itself. 
Abstractness is itself abstract, or in symbols: 

Now, in this notation, the referrer and the referent seem to be 
one and the same. Thinking about this we realize that there is an 
actual distinction: The referrer and the referent arise differently. 
Were they undifferentiated, there would be no reference at all, in 
particular no self-reference. To interpret (13) consistently, the left 
side must be taken as a conceptual category and the right side as a 
specific instance of it. 

Taking SA as an instance of itself, is tantamount to assigning SA 
a different quality beyond its conceptual structure or meaning. This 
structure appears as a part of the conceptual landscape, having its 
own ontological substance without which it has no existence. Any 
quality which we State about concepts (as, e. g., the abstractness of 
the Riemann integral) is not an essential part of their structural 
content, and hence not relevant for purely logical or mathematical 
considerations: But it is essential to their form of existence or 
appearance. The analysis of self-referential concepts shows that, in 
general, on cannot talk about concepts while denying them any kind 
of ontological quality: There would be nothing left to talk about. 

Now let us turn to the concept of predicativity itself as described 
by Greiling/Nelson [1908]. In general, a concept C is callecl 
predicative or self-referential, if 

The distinction between the referrer and the referent is made 
explicit by our method of separating parameters: 

The concept of predicativity (or self-reference) contains an 
element not found in the concept of abstractness. The actual 
relationship between the conceptual category and one of its instances 
is the essential structural part of the concept of predicativity; it is not 
essential (in fact accidental) to the concept of abstractness. When 
Greiling/Nelson introduced the concept "predicative", they lead us to 

(13) 

(14) C>C. 

(14') O1* > Q2\ 
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Single out this relation. In fact, this relation is exactly vvhat 
constitutes the concept of predicativity. Our intrinsic analysis 
therefore requires that we introduce a third parameter which 
expresses the fact that the relation between the constituents of the 
concept predicative, namely the referrer and the referent, is but a 
different representation of these constituents themselves: 

(15) C: G» > C®. 

Without this third parameter C, we would only have a 
predicative (self-referential) concept and not the concept of 
predicativity itself. 

Our analysis of predicative, or self-referential, concepts produces 
the same patterns here in (14) and (15) as were obtained in the 
analysis of self-referential (linguistic) assertions. It is truly 
remarkable that these patterns are alike; for in our analysis of the 
self-descriptive Statement (10') we were moved by noticing a 
perceptual aspect in the Statement. No actual perception arises out 
of the concept of predicativity. As we ponder predicative concepts we 
need to isolate aspects of them for our attention just as we need to 
distinguish the perceptual and conceptual components in self-
referential assertions. From this Observation we obtain two of our 
three Parameters. These stand for distinguishable objects in the 
sense of section 2, where one has a property the other lacks. This 
distinction plays an important role in the following analysis of logical 
antinomies. 

11. Diagnosis of logical antinomies 

Having analyzed self-referential concepts in general, let us now 
turn to the analysis of a logical antinomy. The most direct of the 
logical antinomies is that which Greiling/Nelson [1908, 60f.] report 
as being from Russell. We shall continue the quotation begun in the 
previous section. 

The concept impredicative is itself either predicative or 
impredicative. Assume that it is predicative, it follows from 
its definition that it is impredicative. Assuming that it is 
impredicative, it does not apply to it itself, hence it would not 
be impredicative. Both assumptions lead to a contradiction. 

The very concept of impredicativity is the focus of this antinomy. 
Any concept, C, does apply to itself, i. e. C > C, or does not appply to 
itself, C > non-C. In the former case it is said to be predicative or 
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self-referential; in the latter impredicative or non-self-referential. 
The question is, whether the concept impredicative, let us call it Cim, 
is predicative or not. The concept impredicative comprizes all 
concepts C which have the property of being impredicative, i. e. all 
concepts C with C > non-C. 

The derivation of the antinomy using the present notation 
proceeds in the following way. In case Cim is actually predicative, we 
write Cim > Cim. But because of the meaning of Cim, we would then 
have: C- > non-C. . On the other hand, in case C. actually is im im ' im J 

impredicative, one has Cim > non-Cim, so, taking in account the 
meaning of Cim, we have: Cim > Cim. 

In deriving this contradiction, we begun with the assumption 
that Cim > Cim. This assumption is not merely formal, but has actual 
consequences. The very meaning of Cim is that of concepts being not 
self-referential. So the antinomical reasoning leads us to Cim > non-
Cim. Were we to begin with the opposite assumption, Cim > non-Cim, a 
parallel chain of thought produces a contradiction too. 

An intrinsic analysis of this argument leads us to separate 
Parameters, so that we can go beyond the superficial pattern of the 
argument. The argument heads of with the assumption that Cim is 
actually impredicative, i. e. Cim > Cim. Right here, however, we have 
to distinguish between the conceptual content of Cim on the left and 
the concept of Cim as an object, a conceptual entity on the right, 
giving 

(16) C. (1) > C (2) 
im 

This expression says that Cim
(2) is an instance of Cim

(l\ that is, the 
concept impredicative, taken as an object (conceptual entity), has to 
satisfy its own conceptual content. Hence we have 

(17) CJ2> > non-C. N / im im 

The things denoted by Cim
(2) in (16) and (17) are distinguishable 

objects in the sense of section 2. In (16), Cim
(2) is a specific conceptual 

object, which is an instance of the conceptual content Cim
(1), whereas 

in (17), Cim
(2) itself is a conceptual content of which non-Cim

(2) is an 
instance. 

Conjoining (16) and (17) gives a contradiction if and only if Cim
(1) 

and Cim
{2) are identified. In identifying these parameters, however, 

we loose the very distinction which allowed us to make the transition 
from (16) to (17) in our chain of reasoning. 

A similar argument applies to the chain of reasoning starting 
with the opposite assumption, Cim > non-Cim. We conclude that this 
antinomy is equivalent to neglecting the distinction between the 
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content of a concept and the concept as a substantial object 
(conceptual entity or instance) in itself. 

One might think that this distinetion amounts to a typed 
response. However, type theory does not explain or actually solve an 
antinomy, it simply avoids them. In contrast, our approach goes 
back to the roots of logical antinomies and thus reveals the reason 
why they arise in the first place. 

This paradox concerning the concept impredicative seems to be 
an antinomy only to the thinker who neglects the principle of 
identity by confusing the content of a concept with the concept as a 
substantial object (not from the sense-perceptual reality, of course), 
i.e. the concept as an instance of another (here, the same) concept. 
In other words, a pragmatic contradiction (in our earlier 
terminology, distinetion) is projected onto the field of conceptual 
relations, producing what appears there to be an analytical 
contradiction. 

In his discussion of the antinomy concerning the concept 
"impredicative", Finsler [1927b] stresses the fact that we cannot 
expect circular or self-referential definitions to be satisfiable in any 
case. There are exceptions, and the definition of "impredicative" has 
the property that it cannot be applied to itself without producing a 
contradiction. Therefore, applied to itself, the concept "impredicative" 
has no meaning. 

Russell's set theoretic paradox arises from the antinomy of the 
concept "impredicative" if we switch to the extensional point of view. 
Sets which do contain themselves as elements ("predicative sets") are 
not well-founded. Sets which do not contain themselves 
("impredicative sets") are well-founded; they are also called "normal". 
The set of all normal sets is Russell's set R. If R is normal, it does 
not contain itself as an element hence R is not normal. Conversely, if 
R is not normal, it does contain itself, hence it is normal. This is the 
antinomy. 

Finsler [1926b], [1927b] draws from this Situation the same 
conclusion as above: Self-referential definitions need not be 
satisfiable. 

Conclusion 

All references involve the distinetion between a refering part 
(referrer) and an object which is referred to (referent): This 
distinetion is easily forgotten where self-reference is concerned. But 
in reality it is still there. Were we to neglect this distinetion, there 
would be no actual reference at all, merely an identity. In deriving a 
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contradiction, using one of the self-referential patterns discussed 
earlier in this paper one actually recognizes first of all the distinction 
between the referrer and the referent. The given distinct objects 
have to be recognized as real. But, in the next stage of the 
argument, the distinction is dropped, an identity is assumed, and the 
illusion of a contradiction is produced. Hence, the antinomical 
argument produces an illusory contradiction from a real distinction, 
based upon a violation of the principle of identity. 

Within the antinomical patterns, there lurks a contradiction 
waiting to catch us if we neglect the deeper aspects of self-reference. 
The need for intrinsic analysis of the deeper aspects of reference 
exist in any instance of self-reference, quite apart from whether an 
antinomy arises or not. The antinomies merely make us aware of 
something that is present in all self-reference. Hence the heart of 
the problem is the structure of self-reference. 

When there is self-reference, the referrer is a concept and the 
referent is an observed instance, so Observation is necessary for self-
reference. For self-referential assertions, like the truth-teller or the 
Liar, which involve actual linguistic expressions, the observational 
part of the reference is directly related to sensory perception. For 
self-referential concepts, however, the principle is the same, but the 
Observation is something deeper and more elusive, an Observation 
within the conceptual realm. This is a necessary consequence of our 
accepting the existence of self-referential concepts. This Observation, 
a primary experience by its very nature, reveals a substantial 
component, namely some kind of ontological basis of conceptual 
entities. 

Thus it turns out that the question of whether concepts have an 
existence independent from our mind is not a purely theoretical one, 
subject only to individual beliefs. This would mean also that this 
question cannot be decided by deductive reasoning from some "well-
known" principles. On the contrary, as we have shown, what is 
needed is the Observation and analysis of our own thinking process. 
The basic observational facts and experiences must be drawn from 
carefully designed mental experiments. In this paper, one 
exceptionally rieh example was presented and analyzed, namely the 
concept of self-reference and some of its manifestations. 

Someone who attempts to deny this observational (but not sense-
perceptual) component of concepts as an objection to these views, 
must exclude all self-referential concepts from his considerations. In 
fact, this was done by Russell [1908], who explicitly eliminated all 
self-referential structures. However, this cannot be done 
consistently, as was shown conclusively by Värdy [1979], Suppose, 
self-reference to be forbidden: No assertion or concept applies to 
itself. Obviously, this assertion has a self-referential structure and 
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denies in its propositional content all self-reference, in particular its 
own. This leads to an antinomy. 

An intrinsic analysis of semantic and logical antinomies shows 
that they, in fact, rest upon the same structure. In deriving the 
contradiction, one has to violate the principle of identity, while 
identifying the referrer and the referent. Therefore, from this point 
of view, semantic and logical antinomies are similar. However, they 
differ in the realm from which the referent is drawn. The referents 
in the semantic antinomies are drawn from perception. The referents 
of the logical antinomies, on the other hand, are drawn from the 
realm of pure concepts, hence from conception. It is obvious, in the 
case of semantic antinomies, that the specific perceptual reference 
transcends logical forms. Even the logical antinomies contain 
specific references which are not part of formal logic, though they 
remain accessible to human reason. Pure logic, after all, concerns 
itself with possible objects: The distinctions that underlie the 
antinomies ultimately refer to actual objects. In other words, our 
intrinsic analysis of logical antinomies concerns itself with the 
transition from conceptual propositions to descriptive propositions 
within the realm of pure concepts. Self-reference is the key which 
opens our minds to the experience of the ontological status of 
concepts. 
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Are There Cont rad ic t ions in Mathematics? 

Can contradictions exist in mathematics? That is, insoluble 
contradictions? In this, the most exact of the sciences, is not every 
Statement either true or false, quite independent of all personal 
opinions, points of view, or other influences? Is it possible to prove a 
proposition and also at the same time its negation? 

Some think that these questions are superfluous. Mathematics 
has had the reputation since ancient times of being absolutely true 
and indubitably correct. Of course, false deductions, errors, or 
miscalculations can happen but these can nevertheless be avoided by 
paying sufficient attention. But to arrive at contradictions without 
having made fallacious deductions: Surely this must be excluded. 

And now, this inner consistency of mathematics has been thrown 
into doubt! 

Already in antiquity Zeno believed that genuine contradictions 
existed in the theory of motion and that this whole science had fallen 
into absurdity because of them. The arguments he gave were 
intuitive versions of purely mathematical questions and posed very 
serious problems for the contemporary theory. Today, however, we 
possess rigorous concepts of convergence and continuity, so that 
these things can be considered mathematically clarified. 

Later, especially when mathematics received fresh impetus after 
the discovery of the calculus, people troubled themselves little about 
its rigourous foundations. To obtain results was what carried weight; 
whether or not the way in which these results were obtained was 
completely free from error, was a matter of lesser importance. 

So it came about that real errors in reasoning were unconsciously 
introduced; but a feeling of certainty about the results gave 
mathematicians confidence. 

When the fallacious deductions that had been made became 
apparent, the lack of a sound foundation for the whole of 
mathematics, one that would afford the greatest possible certainty 
against any errors whatever, made itself feit. 

Yet, just when it was believed that this goal had been reached 
and when, furthermore, it had come to light that one can also 
calculate with infinite numbers, i.e. with sets of infinitely many 
things, in an unambiguous way, the investigations ran up against 
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some of the Strange contradictions which threaten the whole 
foundation. Right, up to this day no generally accepted explanation 
has been found. 

We must therefore occupy ourselves with these antinomies if we 
want to know whether, or to what extent, mathematics can be 
considered free of contradictions. 

I should like to illustrate the nature of these contradictions with 
two examples, not very difficult ones, both of which are due to 
Russell. The simpler is more purely logical: The other stems directly 
from the foundations of set theory and touches upon the foundations 
of mathematics. 

The first is connected with the following question: Which is the 
smallest natural number that cannot be defined with fewer than 100 
syllables in the English language? And above all does there exist such 
a number? 

It can be shown that such a number must exist. For, among the 
natural numbers there are certainly finitely many numbers each one 
of which can be defined with fewer than 100 syllables. There are only 
finitely many syllables, so there can only be finitely many 
combinations of 100 syllables or less. Of these combinations only a 
small portion represent meaningful definitions of numbers. There 
are still other numbers which cannot be represented in this way, and 
among these there must be a smallest. This, then, is the number that 
is sought. 

On the other hand, one can reason that there is no such number. 
For, should it exist, one could define it with fewer than 100 syllables 
by means of the phrase: "The smallest natural number that cannot 
be defined with fewer than 100 syllables in the English language." A 
contradiction results. 

The second example is that of the set of all sets that do not 
contain themselves as elements. 

If any objects whatever are given, then one can collect them 
together into a set and call these objects the elements of the set. One 
can thus speak of the set of all men; each man is contained in this 
set. He is an element of the set. Similarly, one can form the set of all 
numbers, the set of all circles in a plane, and so on. 

These are examples of sets which do not contain themselves. The 
set of all men is not itself a man, it is therefore not identical to one of 
its own elements. Similarly the set of all numbers is not itself a 
number, so it is not contained in itself. Whether there also exist sets 
which do contain themselves may be left as an open question for the 
time being, and is in any case of no consequence for the present line 
of thought. It is enough that there do exist sets which do not contain 
themselves. Now, combine all these sets into a new set. They form 
"the set of all sets that do not contain themselves". 
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But now, how do things stand with this set? Does it contain itself 
or not? 

Suppose that it were to contain itself. Then it would be a set 
which contains itself as an element. It ought, however, to contain 
only such sets as do not contain themselves. Therefore it cannot 
contain itself. 

On the other hand if it does not contain itself, then it would have 
to be one of those sets that do not contain themselves. It ought, 
however, to contain all the sets of this kind and therefore it would 
have to contain itself. 

Thus, if it contains itself, then it is not allowed to contain itself: 
And if it does not contain itself, then it must, all the same, contain 
itself. This is a contradiction. 

This contradiction is not without significance for set theory. Set 
theory is a comparatively new branch of mathematics; it was founded 
by Georg Cantor a few decades ago and has in the meantime attained 
fundamental significance for many parts of mathematics. An attempt 
was made to build up the whole of mathematics from set theory but 
this has run aground on precisely these antinomies. Of course, it is 
possible to form particular sets which appear to be quite free from 
objection and one can construct sets of ever greater size but the 
question is: How far can one proceed in this way? In the end one 
certainly does run into contradictions. 

Further, if it is not possible to collect together all the sets with 
some definite property, is one then allowed to speak of all the 
numbers which possess some definite property? Are contradictions 
possible in such a case too? But then, reasoning of this kind is in 
continual use throughout mathematics. 

Many attempts have already been undertaken in order to solve 
or avoid these difficulties; here I can briefly characterize only the 
most important of these. 

Doubtless many view the first of the above mentioned examples 
as being not particularly serious and content themselves with any 
one of the plausible explanations. The most widely accepted Solution 
is, of course, that it is only a question of the inexactitude of language. 
Language is not logically exact; the number of syllables in a 
definition is not a mathematically legitimate quantity. 

To this view it has to be objected, however, that it must be shown 
where the inexactitude is to be found and whether it can then be 
corrected so that such things can no longer occur. For, if ordinary 
language were really to lead into insoluble contradictions, then it 
would no longer serve for general use. 

The attempt at a Solution by Henri Poincarö is not very different 
from this. He says that a Classification of something according to the 
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number of syllables of the sentences used to define it is not well 
defined. For, during our inspection of the sentences some of them, 
namely those which depend upon the Classification itself, may 
change their meaning. Therefore the Classification is unstable ancl 
can never be fully completed. 

Yet how is it if one restricts oneself to entirely unambiguous 
sentences? If I separate off only those numbers which can be defined 
in a completely unambiguous and unvarying way with fewer than 
100 syllables in the English language, then this Classification is 
certainly well-defined. But then again there must exist among the 
remaining numbers a smallest one which is then determined in an 
entirely unambiguous and unvarying way. The contradiction has not 
been removed. 

Russell, who seeks to get rid of the various contradictions with 
the help of his theory of types, goes about the problem in another 
way. A similar theory is also due to Julius König. 

What Russell says in relation to the second example is roughly 
the following: If one collects together sets of a specific type then this 
gives rise to a set of a new type. It is not permissible then to collect 
together sets of different types. 

With that the contradictions will be avoided; but also only 
avoided and not solved, for, it is really by no means evident why one 
should not also be able to collect together sets of different types. But 
as soon as one has the freedom to collect together arbitrary types, the 
contradictions arise anew. Besides, the concept of the type, even 
should it turn out to be useful, is difficult to define; according to 
Russell's own words, a large part of the theory is still to this day 
chaotic, confused and dark. 

Recently two mathematicians, namely Brouwer and Weyl, have 
even gone so far as to reject the law of the excluded middle. They 
say, for example, that two numbers are not necessarily either equal 
or different. There is still a third possibility. It could be that the two 
numbers are neither equal nor unequal but in some way 
iridis tinguishable. 

In themselves such assumptions may lead to quite interesting 
investigations, but exact science can certainly not be founded upon 
them, quite apart from the great complication which would arise; 
also many of the most secure results would have to be abandoned. 

Now in order to rescue at least that part of set theory which is 
important for applications, Zermelo has set up an axiom system 
which exclusively determines the formation of sets. As far as it goes, 
however, this can only be viewed as an emergency measure. Zermelo 
shows that he avoids the well known paradoxes but does not show 
that contradictions really are impossible in his restricted domain. 



Are liiere Contradictions in Mathematics ? 43 

Finally Hilbert, the main advocate of axiomatic method, seeks to 
prove the consistency of the separate parts of mathematics. He shovvs 
in his "Grundlagen der Geometrie" [1913] that elementary geometry 
can be completely reduced to the arithmetic of the real numbers. 
Every contradiction that is to be found in geometry must appear also 
in arithmetic, and thus if the former is to be consistent then so must 
be the latter. 

But how is one to demonstrate the consistency of arithmetic? One 
must eventually return, via set theory, to pure logic. Yet it is just 
here that the difficulties arise, for here one runs up against the 
antinomies. 

Hilbert also sought, therefore, to axiomatize and formalize logic. 
He developed logic and arithmetic together, step by step, in order to 
prove the consistency of each step. The original ground upon which 
he builds everything is the recognition of sym bols. 

This of all things seems to me to be dubious. There is something 
of a subjective nature surrounding the process of recognition. Does it 
make sense to consider the recognition and combining of 
mathematical symbols to be more reliable than pure logic? So that 
one can base logic itself upon it? 

Quite apart from this, however, and with all due recognition of 
the endeavours undertaken and the results achieved by Hilbert in 
this field, one must surely say that, in order to "restore the old 
reputation of incontestable truth to mathematics", such proofs alone 
cannot suffice. For if there exists a contradiction which really is 
inexplicable in even one part of mathematics then strictly speaking 
all proofs are threatened. One could never be certain whether or not 
an inexplicable contradiction might arise within what seemed to be 
the most secure arguments. It serves no purpose whatsoever to say 
that the contradictions occur in the boundary regions of 
mathematics. For where in set theory does the boundary of the 
boundary regions lie? Do not the investigations of Hilbert too take 
place in such a boundary region? 

No, the only path which can lead to the goal is the one which 
really clarifies the antinomies and really solves them. 

But can we travel such a path? 

After many fruitless attempts the view has been expressed that a 
Solution by means of an explicit presentation of the errors in 
reasoning is not possible. One will just have to put up with these 
things or at least await a transformation of logic. 

But can one put up with contradictions in mathematics? As has 
already been mentioned all proofs would then loose credibility; even 
more it can be shown that any one contradiction entails all other 
contradictions. If one allows only a Single contradiction then one can 
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prove everything true and everything false in the same way that one 
argues from a false hypothesis. With that, however, science becomes 
impossible. 

And what about a transformation of logic? Is it possible to 
transform logic? This could only be possible for a written or 
formalized logic. Such a logical system could be incorrect or too 
restricted: But this is not true of pure logic, the logic to which one 
has to submit as a rational being. Should this logic be changed, or 
were it to leacl to contradictions, then again all science would be 
impossible. 

Thus if one does not want to abandon all science, one has to 
conclude: that the contradictions are soluble. This path must be 
open. 

I will now attempt to proceed along this path. I begin with the 
simplest starting point. 

The first example mentioned above is still somewhat complicated; 
in particular, it is not easy to see specifically which number is 
involved. I will therefore strip away everything that is superfluous 
retaining only the essentials. 

First, I write on this blackboard the numbers 1, 2, 3 and then the 
sentence: "The smallest number which is not specified on this 
blackboard" (see figure 1). 

L 2, 3, 

The smallest natural number which is not specified on this 
blackboard. 

Figure 1 

Does there exist such a number? One can now repeat the earlier 
argument: Only finitely many numbers are specified on the 
blackboard. Among the remaining numbers there must exist a 
smallest. On the other hand, if it did exist then it would certainly be 
specified on the blackboard by means of this very sentence. 

Now, however, the Situation is so simple that we certainly must 
find the Solution. In fact if one proceeds purely logically then one 
comes to a completely unambiguous result. That, after all, is the 
goal: Every question must get an unambiguous answer. 
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It is good not to take these simple things too lightly. They are 
necessary for an understanding of the more difficult set-theoretic 
questions, in which reasoning of the same kind is found. 

How is it now? I shall reason in a way that is common in 
mathematics. The question is: Which numbers are specified on this 
blackboard? 

The numbers 1, 2, and 3 are there. Is the number 4 also specified 
on the blackboard? Suppose that it were, then it could only be given 
by means of the remaining sentence. This sentence requires, 
however, that the number under consideration should not be 
specified on the blackboard. This requirement would then contradict 
the supposition, which would therefore be false. It follows that the 
number 4 is not specified on the blackboard. 

On the other hand, there are numbers which are not given on 
the blackboard; among these there must be a smallest. We have just 
seen that the numbers 1, 2, and 3 are given on the blackboard and 
that the number 4 is not given. Therefore the number 4 is actually 
"the smallest natural number which is not specified on this 
blackboard". 

Is this really a contradiction? Does not this sentence actually 
specify the number four? 

Answer: No, it does not. For, this sentence as it stands not only 
requires explicitly that the number in question should not be 
specified on the blackboard, but it also requires at the same time, 
implicitly, through the fact that it stands itself on the blackboard, 
that the number it specifies surely is specified on the blackboard. 
The number 4 does not satisfy these two self-contradictory 
requirements. 

The essential error in reasoning which occurs in the usual 
treatment lies in the fact that the implicit requirement, in this case 
the requirement that the number certainly must stand on the 
blackboard, is only subsequently taken into consideration and not, as 
it has to be, taken from the outset. There is a difference between the 
sentence as it stands on the blackboard and the same sentence when 
it is spoken. The spoken sentence does not contain the implicit claim, 
whereas the sentence on the blackboard does contain it. 

A good natured reader could perhaps say: The number 4 surely is 
intended by this sentence. Logic, however, is not so good natured. 
Taken logically this sentence is actually identical to the following: If 
the number 4 is not specified, then the number 4 shall be specified: If 
the number 4 is specified, then the number 5 shall be specified. 

In this form it is quite clear that no number at all is specified by 
means of this sentence, neither the number 4 nor any number. 
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Similar paradoxes resolve themselves in the same way. The set-
theoretic ones are somewhat more difficult. 

It becomes apparent that the set of all sets which do not contain 
themselves as elements cannot really exist at all. 

One could now argue as before: The contradiction is hidden in 
the definition. The definition requires something impossible. This set 
cannot be consistently defined; and something that cannot be 
consistently defined need not exist. 

This explanation is indeed correct but not satisfactory. There still 
remains the question, and this is the heart of the set-theoretic 
antinomies: How does it come about, or how is it possible that there 
do exist things which cannot be collected together into a set? 

We must ask ourselves: What is a set? According to Cantor it is 
"the collection of well-defined objects into a whole". That is to say, 
the collection itself. It really does seem as though one can always 
collect arbitrary things together to form a whole. What should there 
be to hinder one from doing this? Here, however, we have to be 
careful. 

Yes, if one is dealing with concrete, material things, or those 
things that have nothing to do with the formation of sets, then there 
are indeed no reasons why one should not be able to collect them. 

It is quite otherwise, however, when the things or their 
membership relations can enter into the formation of the set itself. 
These relationships could then be of such a kind that it is impossible 
for them to be fullfilled. 

More precisely: If one forms sets of sets, or permits things 
dependent upon sets as elements, then the definition of Cantor is a 
circular definition and as such need not always be satisfiable. 

As this is important, I should like to illustrate it by means of a 
simple example. 

One can define a number x by means of an algebraic expression, 
for instance by the expression a — b: 

x = a-b. 

If a and b are fixed numbers which do not depend upon x then a 
circle does not arise. The definition is always satisfiable: There 
always exists a number x which satisfies it. 

Now, the algebraic expression by means of which x is defined 
could, however, depend upon x itself. It is then a circular definition 
and can still, under certain circumstances, be uniquely satisfiable. If, 
for instance, 

x = a- x, 
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then this condition is satisfied uniquely by the number jc = a/2. 
A circular definition does not, however, need to be satisfiable; in 

x = a + x 

when a is different from zero, there is no number satisfying it. 
One cannot simply prohibit the circle; such equations occur often 

enough in applied mathematics and one must know how to deal with 
them. 

It is exactly the same with sets. Cantor's general definition is a 
circular definition, so it is not to be wondered that there are 
instances in which it breaks down. 

The definition on the blackboard (see above, figure 1) is also 
circular. The number to be defined is made dependent on the 
definition of this same number, and this dependence is of such a kind 
that it cannot be satisfied. 

The antinomies are of a circular nature and the contradictions 
have to do with this fact; but this knowledge is of course not new. 
Yet, having recognized this, people then sought to avoid all circles by 
means of types or hierarchies, and were unable to attain the goal by 
these means. The proper Solution is one which does not begin by 
attempting to avoid all circles. One must be far more clear about this 
point: A circle may very well be uniquely satisfiable, but this need 
not always happen. 

There is still an objection which needs to be discussed. It is said: 
If one thinks of all really existing sets which do not contain 
themselves as being given, then one can certainly conceive that all 
these can now be again collected together into a whole, into a set. 

We must reply: This is not true! One cannot conceive of this. In 
doing so one conceives of something different and beside the point. 
For, if one could conceive of this, then one would also have to be able 
to say whether or not this very collection is to be included. Does one 
conceive of this set as one which contains itself or as one which does 
not? One cannot say. No, something which is logically inconsistent 
can never be conceived; one can just as little conceive of this set as, 
for instance, of the largest natural number, which (as we know) does 
not exist either. 

For a füll treatment of the questions dealt with it is not only 
necessary to reveal the errors in deduction but it is also necessary to 
be able to show how they can be avoided; how, in particular, it is 
possible to achieve a useful and consistent set theory. 

On this matter, however, I will have to confine myself here to 
indicating only a few essential points (see Finsler [1926b] for more 
details). 
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In set theory it is desirable to have the system of all sets as a 
unique and fixed system, as is the case for the system of all natural 
numbers in number theory. 

This goal, which is not reached by the axiom system of Zermelo, 
can be attained if one introduces only one particular restriction 
which in fact allows sufficient scope for all applications, even though 
it may seem narrow. 

First of all, in order to obtain a really fixed system, one must 
exclude all non-mathematical objects. At this stage the set of all men, 
for instance, cannot occur. The domain of arbitrary mathematical 
objects is also not sharply enough circumscribed, therefore it is still 
necessary to exclude even these as members of sets. All that remains 
are the pure sets, i.e., those sets whose elements are themselves 
again pure sets. 

Such pure sets do exist, for instance the empty set {}, the set 
which possesses no elements; it plays an important role in set theory. 
It contains no element at all, hence nothing that is not a pure set. 
Moreover one can form the set which contains as its sole element the 
empty set {{}}; this is likewise a pure set. Further that set which 
contains the set just defined, {{{}}}, also that which contains both of 
the first two sets {{}, {{}}}, etc. Arbitrarily many infinite sets can also 
be produced this way. 

For applications one can then represent other sets by such pure 
sets or, in as far as it is just a question of mathematical objects, 
define them directly in terms of pure sets. The sequence {}, {{}}, {{{}}}, 
... , for instance, can be considered as being the representation of the 
sequence of the natural numbers. 

The totality of all these pure sets, which, however, I have not 
defined completely, now forms a fixed system. (The complete 
"axiomatic" as opposed to "intuitive" definition is to be found in 
Finsler [1926b].) 

But now the very same objections that are directed against the 
set of all sets and against the system of all things have also been 
raised against the totality of all pure sets. All these concepts are 
frequently considered as being equally contradictory. 

These objections are not easy to refute; essentially they amount 
to maintaining that one can still enlarge the system of all sets. But 
this system, just because it does contain all sets, must be the largest. 

A more detailed examination shows, however, that here again lie 
hidden fallacies of the sort discussed above. It is actually not possible 
to enlarge the system of all sets, and it is as impossible in this case as 
it is to specify on the blackboard a number which shall not be 
specified on the blackboard, or, just to mention briefly another 
paradox, as impossible as it is to define, with finitely many words, a 
number which cannot be defined with finitely many words, even 
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though it can be proved with a fixed underlying dictionary that such 
numbers really do exist. 

Within the system of all sets, as we have seen, it can happen that 
certain sets cannot be collected again into a set. In attempting 
certain collections difficulties appear to arise. One must first have a 
proof of the existence of each separate set. 

In reality, however, these difficulties are confined to only a part 
of set theory, and indeed to only that part which, in any case, is not 
important for applications. That is to say, one can distinguish 
between circle-free sets, which can be defined free from circularity, 
and circular sets, for which this is not possible. 

To the circular sets belong, in particular, every set which 
contains itself, but also, for instance, the set of all circle-free sets is 
circular. In the domain of these circular sets the usual Operations are 
not valid, nor are the axioms of Zermelo. The paradoxes lie in this 
realm. 

On the other hand the circle-free sets are those upon which the 
rest of mathematics can be built. If one only admits that circle-free 
constructions are always feasible, and this must surely be viewed as 
self-evident, then one can secure clarity concerning not only the 
questions of the consistency of arithmetic and analysis but also 
concerning such topics as the transfinite ordinal numbers and 
similar, hitherto controversial subjects. 

In any case, the result that all contradictions are really only 
apparent does, I believe, stand firm; mathematics as such is free 
from contradictions. There is still a science in which nothing is valid 
except the pure truth. 
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Formal Proofs and Decidibility 

I. Statement of the Problem 

§1. In order to demonstrate the consistency of certain axiom 
systems, Hilbert makes use of a theory of mathematical proof in 
which the proof must be thought of as rigorously formalized in 
concrete symbols (see Hübert [1922], [1923], [1926], Bernays [1922], 
Ackermann [1924]). "A proof is an array which must be graphically 
represented in its entirety" (Hilbert [1923, 152]). He adds: "Aformula 
shall be said to be provable if it is either an axiom, or arises by 
substitution into an axiom, or is the concluding formula of a proof' 
(ibid., 152-153). The aim, then, is to show that, in a given axiom 
system, a contradictory formula (formalized in the same way) can 
with certainty never be proven. Axiom systems for which this can be 
demonstrated are said to be "consistent" (ibid., 157 and [1926, 179]). 
In the following where the formalization is quite general, such 
systems will be called formally consistent. 

§2. The question of whether or not formal consistency implies a 
real freedom from inner contradiction in the axiom system is 
connected with the decision problem. 

Were every mathematical assertion, whose truth or falsity is a 
logical consequence of some axioms, to be decidable by means of 
purely formal proof, then the problem of whether the system is 
consistent or not could be completely determined on the basis of 
formal consistency alone. 

This no longer holds, however, if there exists a proposition whose 
validity is indeed logically established in a theory but which, purely 
formally, can neither be proved nor disproved. One could then add 
this proposition, or even its negation, to the system as a new axiom 
and thus obtain two formally consistent axiom systems at least one of 
which is internally contradictory. 

§3. Now this possibility does in fact arise in connection with the 
axiom system for the real numbers, provided that there are at most 
countably many symbols, which is indeed certainly the case for 
concrete symbolic proofs. 
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There can then exist only countably many formal proofs, since 
each one must consist of a finite collection of symbols (Ackermann 
[1924, 9]). In the theory of the real numbers, however, there are 
more than countably many propositions. Consider the proposition: "a 
is a transcendental number". For each fixed value of a this is a 
definite, true or false proposition. Not all of these uncountably many 
propositions can be formally decidable. Otherwise there would have 
to exist uncountably many distinct proofs, even if some were 
variations of a general method. From this, however, it follows that 
there do exist propositions which are not formally decidable. 

§4. It is still conceivable, however, that all propositions which 
can be represented formally are formally decidable. In this case the 
newly added axiom would not be formally representable. (One cannot 
formally represent quite arbitrary things simply by introducing a 
new symbol for them: One has to proceed in a fixed language and 
must carry out everything formally, the definition of new symbols 
included, otherwise the representation would not be purely formal -
cf. end of §7.) 

One could even suppose that such a non-formal contradiction 
might never be noticed; one could continually act as though it was 
not present. Possibly, no damage would be done. 

It will now be shown by means of an example that it is actually 
possible to construct propositions which, in a general way, are not 
formally decidable. They are formally consistent but, all the same, a 
contradiction can be found by an informal argument. Hence it follows 
that the proof of the formal consistency of a system gives no 
guarantee against an actual contradiction. 

These things are closely connected with the "paradox of finite 
definability", so a precise statement and explanation of this paradox 
will be given first of all (cf. Finsler [1925]). 

II. The Paradox of Finite Decidability 

§5. Let us assume that a fixed language L, consisting of finitely 
many symbols, is given. (One could also accept a countable infinity of 
symbols without causing any essential alteration.) In particular, let 
this language contain all the symbols necessary for mathematical 
purposes, or even, all the symbols ever used in writing or printing 
(perhaps even in the future). A fixed, "alphabetical" ordering of these 
symbols will also be taken as given. 

Further, one forms a fixed dictionary, D, including a "grammar", 
which unambiguously gives meanings to certain "words" that are 
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finite combinations of the symbols. Words with finitely many 
different meanings, as happens in common language, shall be 
unambiguously distinguished by means of indices. Certain symbols 
or combinations of symbols will be taken as "variables", which take 
their meaning from the grammatical structure and the context in 
which they appear. In particular, all the words of the foregoing 
discussion, with their understood meanings are in D, along with all 
words which have ever been printed or written until now (or even in 
the future). The "definitions" in the dictionary need not be expressed 
in L, they could be thought of as being given purely ideally. 

Every combination of symbols having no unique meaning in D 
shall be held to be meaningless. 

An object will be called finitely definable if there is a finite 
collection of symbols from L such that these symbols refer uniquely 
to the object when they are interpreted according to the dictionary D. 

§6. Each sequence consisting of the numbers 0 and 1 only, 
including 0000 ... and 1111 ..., will be termed binary sequence. 

Two binary sequences will be defined to be equal if and only if 
the entry in each place of the one sequence is the same as that in the 
corresponding place of the other sequence. 

By a well known argument due to Cantor the totality of all 
binary sequences is uncountable. 

That is to say, given any countable collection of binary 
sequences, there exists a binary sequence, which may be termed the 
anti-diagonal sequence, and which has in the n-th place an entry 
which is different from that of the n-th binary sequence of the 
countable collection. This binary sequence (the anti-diagonal one) 
cannot be contained in the given collection. Therefore no countable 
collection of binary sequences can contain all of them. 

The set of all the sequences which are finitely definable using D 
must, by contrast, be countable. 

One can impose an ordering upon the collection of all finite 
combinations of symbols of the system L, thereby constructing a 
countable sequence, in the following way: Those combinations that 
possess the fewest symbols appear first and among those with an 
equal number of symbols the "alphabetical" order is to hold. By 
means of this ordering all words that define a definite binary 
sequence, and hence all finitely definable binary sequences, are 
enumerated. One and the same binary sequence could appear on the 
list more than once - this does not matter. 

§7. From these considerations it follows that there do exist 
binary sequences which are not finitely definable using D. 
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This is not surprising in itself, for, after the binary sequences 

have been defined in their totality, it would be a restriction to 
require in addition that every single binary sequence must possess 
its own separate finite definition. 

The paradox lies, however, in the fact that from among those 
binary sequences which are not finitely definable a definite one can 
be unambiguously specified, namely: the anti-diagonal sequence 
associated with the collection of finitely definable sequences. This 
seems to give us a finitely definable sequence. 

In reality this is not the case. This last definition certainly does 
consist of symbols from L and words which are in D. But it is for 
precisely this reason that it is logically objectionable. 

That is to say, anything determined by means of an 
unambiguous definition consisting of words from D must be finitely 
definable. A binary sequence cannot however be finitely definable 
and at the same time meet the conditions of the antidiagonal 
sequence. That definition therefore requires something inpossible, 
and consequently there does not exist. any binary sequence which 
satisfies it. 

This result is to be expected. If something cannot be defined in a 
certain way, then all attempts to do so are bound to fail. 

The giveri definition becomes meaningful when it is taken out of 
formal symbolism into pure thoughts where it is abstracted from its 
formal expression. Then it clearly defines a definite binary sequence 
which is not finitely definable using D. (This binary sequence does 
not even allow a purely formal representation by introducing a new 
symbol - cf. beginning of §4. After all, the formally represented 
concepts of the future are also all contained in D.) 

§8. A simple example should clarify this situatuation (cf. Finsler 
[1925]). 

The numbers 1, 2, 3, and the sentence "the smallest number 
which is not written on this board" are written on a blackboard. The 
quoted phrase which is written on the blackboard cannot define any 
natural number in a meaningful manner. One cannot, however, 
conclude from this that the number 4 does not exist. Equally one 
cannot conclude from the above paradox that binary sequences which 
are not finitely definable do not exist. The same holds true of real 
numbers which are not finitely definable. 

III. A Proposition which is Formally Undecidable 

§9. A proposition which is formally undecidable will now be 
constructed. In doing so we adopt the following definitions as a result 
of the previously established ideas. 
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A formal proof is a finite combination of symbols of the system L 
such that its meaning using D yields a logically correct proof. 

Any proposition is saicl to be formally undecidable if no formal 
proof is possible, either for it or its negation. 

We now consider all those combinations of symbols of the 
language L which furnish a formal proof for the fact that the number 
0 occurs infinitely often in a given binary sequence, or alternatively 
prove that it does not occur infinitely often. Every such proof 
determines a unique binary sequence, the one treated in the proof. 
There could exist multiple proofs for one and the same binary 
sequence. 

• These proofs can be arranged in a countable list using the 
ordering defined in §6. This gives an incluced enumeration of the 
corresponding binary sequences. Now take the anti-diagonal 
sequence determined by this induced list and consider the 
proposition: 

In the anti-diagonal sequence so defined the number 0 does not 
occur infinitely often. 

This proposition is formally undecidable since the binary 
sequence to which it refers cannot belong to the previously drawn up 
list. For this reason this proposition can be called formally consistent. 

§10. In spite of this, however, one can see that this proposition is 
false and consequently inconsistent. 

That is to say, the number 0 must indeed occur infinitely often in 
the anti-diagonal sequence under consideration. To see this, form 
increasingly long proofs of the proposition that the number zero does 
not occur infinitely often in the sequence whose entries are 
uniformly equal to one. To every such proof, however, there 
corresponds a zero in the anti-diagonal sequence. Hence infinitely 
many zeros must occur in this anti-diagonal sequence. 

§11. It appears that there is a contradiction here: A formally 
undecidable proposition seems nevertheless to have been formally 
decided. 

In actual fact this is not the case. The formal proof just given, 
which consists of words from D, is, as such, formally objectionable; 
for it refers to a binary sequence which cannot occur in the 
enumerated list. Hence this very proof implicitly requires of itself 
that it is not a formally valid one. Thus were we to suppose that the 
proof be formally valid, then a contradiction would appear in the 
proof itself; so it cannot be formally valid. There is no way around 
this difficulty that would allow one to formally decide the anti-
diagonal proposition. 
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The proof becomes free from objectiori, however, as soon as it is 
transfered from. the formal symbolism into pure thoughts where it is 
abstracted from its formal expression. 

No contradiction is to be found within the formal definition of the 
anti-diagonal sequence itself; the sequence can be formally defined. 

Thus there really does exist a formally representable proposition 
which is formally consistent but logically incorrect. 

§12. A simpler example, like the one in §8, will be given by way 
of comparison. 

One writes on the blackboard the proofs of the four propositions: 

is rational; is irrational; is irrational; VI is rational. 
Further one writes in addition the following on the same board: 

"Definition. Let m be the smallest natural number such that no proof 
on this board decides the rationality of its Square root. 

Assertion. 4m is irrational. 
Proof, Since for the numbers 1, 2, 3, 4, it is decided on this board 

whether their Square roots are rational or irrational, m must be 
greater than 4. Since proofs for at most five numbers are on this 
board, m must certainly be less than 9. Therefore the Square root of 
m must lie strictly between 2 and 3. Now the Square root of a natural 
number is either a whole number or an irrational number. Since 4m 
cannot be whole number it follows that 4m is irrational." 

In this example m must be equal to 5, because for m > 5 the 
number 5 would certainly be the smallest natural number for which 
nothing is proved on the board. 

It really is the case that m = 5; for the last proof which stands on 
the board is mistaken just because it appears there. By the very fact 
that it is written on the board it is necessarily invalid; otherwise m 
would not be the correct number. 

The proof given is correct, however, as soon as one grasps it 
purely in thought, so that as such it does not stand on the board. 

The definition of m given on the board is sound; it clearly defines 
the number 5. 

If, in addition, one were to write on the board the proposition: 
"4m is rational", then this would be a proposition which would be 
represented on the board but not refuted nor even decided there. It 
would nevertheless be false. Further, it would be impossible to write 
on the board a proof which could refute this proposition. 

41 
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On the Solution of Paradoxes 

The antinomies of set theory and similar associated paradoxes 
have frequently been the subject matter for discussions; but füll 
agreement over the various explanations has never been reached. As 
these things are of special significance for the foundations of 
mathematics, it is a pleasure to take the opportunity offered by the 
publisher of this periodical to comment from a mathematical point of 
view on the paper of H. Lipps, Die Paradoxien der Mengenlehre 
[1923], in the Jahrbuch für Philosophie und Phänomenologische 
Forschung. 

In this investigation Lipps was, as he says, aiming at a Solution 
of the paradoxes with which set theory is encumbered and in doing 
so he adopted the Standpoint that they need, and admit a Solution. In 
my opinion, the mathematician must also adopt this point of view. 
Every inconsistency in pure mathematics or in logic imperils the 
entire body of scientific knowledge and must therefore be cleared up 
and done away with. This task can be difficult but surely not 
insoluble; for even if there do exist problems which cannot be treated 
by human means, the task of exposing mistakes in an obviously 
fallacious argument is surely not one of them. On the contrary, in 
this case we must be capable of carrying out a Solution. 

A great danger arises here, that of being content with the 
discovery of a genuine or even only imaginary mistake and then 
considering the question as being solved without ever facing the 
heart of the matter. The contradictions will then appear again at 
deeper levels. One ought to place more rigorous conditions on a 
genuine Solution. Above all it must not carry arbitrary elements in it; 
on the contrary, it must arise unambiguously from the task itself. 
The Solution of a contradiction can therefore not be found in 
philosophical discussions of a general sort, but only in logical 
reasoning in which the concepts are exact. 

I should like to discuss only a few of the paradoxes by giving 
briefly the most important points on which I cannot agree with the 
author of the paper mentioned, and will add the explanation which I 
hold to be correct. 

A word is said to be autological if its meaning applies to itself; it 
is said to be heterological otherwise. Thus the word "short" is 
autological; but the word "long" is heterological. Now, is the word 
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"heterological" autological or heterological? Both assumptions leacl to 
a contradiction. 

Lipps seeks the explanation by saying that here we are not 
concerned with properties of words. But why should it not be a 
property of a word that its meaning applies to the word itself? If the 
assertions "the word 'short' is short" and "the word 'pentasyllabic' is 
pentasyllabic" possess a common property then the words "short" and 
"pentasyllabic" themselves also have a common property, namely 
that assertions of this kind hold for them. 

In order to clarify this point we want to investigate what has to 
be understood by a "property". First of all, one recognizes that even 
arbitrary things which are not of the same kind can possess a 
common property. Thus Europeans and Sirius have the common 
property of being mentioned at the beginning of this sentence, and 
hence differentiate themselves from other "things". In general, in an 
arbitrary domain of things there are at least as many properties as 
there are sets of these things; for to every set there corresponds a 
property of its elements, namely that of belonging to this set. 
Together with further requirements, which have to be placed upon 
the concept "property", one comes to the following definition: 
Anything that applies to or does not apply to each object of a 'given 
domain is said to be a property. A property must, therefore, 
unambiguously subdivide the things of the domain into those to 
which it applies and those to which it does not. Conversely, anything 
which gives rise to a division of this kind is said to be a property. The 
partition, however, need only be determined for the domain of things 
in question; outside of this domain the property can be "meaningless" 
or "undefined". 

Other definitions which could be given for the concept "property", 
if they are sufficiently exact, can be reduced to this definition. 
Intuitively, properties are often indeterminate, but they can be made 
precise, at least in principle, by refining the definition in the doubtful 
cases or by restricting the domain. 

Thus if one speaks of a definite property, it must follow 
unambiguously from the definition to which things it applies and to 
which not. Nothing more, however, has to be required of the 
definition; for from the purely logical point of view, there is no 
obstacle to considering properties of equal extension (those that 
apply to the same things and fail to apply to the same things) as 
being identical. Among the positive even numbers the property of 
being "prime" is identical to the property of being "smaller than 
four", as well as to the property of being "equal to two". In the 
domain of all numbers, however, quite different properties are 
designated by the quoted words. 
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Now, how does it stand with the concepts "autological" and 
"heterological"? Are definite properties of words expressed by them 
or not? In the following investigation we must adhere strictly to the 
given definitions of the concepts, since they are determined solely by 
means of these definitions and do not carry a definite meaning in 
themselves. 

Let us first of all consider the three words "short", "pentasyllabic" 
and "long". Of these, according to the definition, the first two are 
autological, the last heterological. In the domain consisting of these 
three words, the properties are well-defined. 

For things other than words, Single letters for instance, these 
properties are not defined. At first sight it seems as though these 
properties are defined in the domain of all words, and hence would 
have an unambiguous meaning for any arbitrary word. This, 
however, is not the case. 

In order to know whether the meaning of a word applies to the 
word itself, one must already know the meaning of the word, not 
only in certain Single cases but also as it applies to itself. Concerning 
the words "autological" and "heterological" the meaning, according to 
the definition, is dependent on this very meaning itself in a circular 
manner. This circular definition can indeed be fulfilled in the case of 
"autological" but not fulfilled uniquely. In the case of "heterological", 
however, it is completely non-satisfiable. Thus the definition does not 
yield an unambiguous result for arbitrary words to which it could 
apply. Exactly for this reason these properties do not have a definite 
meaning in the domain of all words. If, however, one wants to use 
the words "autological" and "heterological" to designate properties 
which are defined for these words themselves as well as for others, 
then a special stipulation is necessary. One could rule that both 
words are unambiguously heterological, without regard for the 
earlier rule. In this case the word "heterological" would indeed have 
the property that its meaning applies to itself, but it would not 
possess the property of being autological. 

In summary, a property is only determined by its definition, and 
therefore only has meaning concerning those things for which the 
definition is unambiguous. That the definitions of "autological" and 
"heterological" do not apply to arbitrary words stems from a circle 
contained in their definition. 

Thus if one says: It is necessary for a property either to apply or 
not apply to each thing, then this is a stipulation or a requirement 
which one places upon the concept "property" and not a self-evident 
Statement. It is not necessary that this requirement be made 
universal. One can, as we have done, speak of properties when the 
domain is restricted. 
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Other paradoxes are now to be dealt with in just the same way. 

The predicat.es "conceivable" and "abstract" can both be stated of 
themselves; and this constitutes a property common to both 
predicates. If, however, one designates as predicable all predicates 
which can be stated of themselves, and on the other hand all others 
as impredicable, then two properties and at the same time two 
predicates are defined by this. But they cannot be applied to quite 
arbitrary predicates, as one might naively think. This is because 
there is a circle in the definition of the predicates "predicable" and 
"impredicable", so they do not always yield an unambiguous result. A 
further special condition is still necessary if the predicates are to be 
applied to themselves. There does not exist a property "impredicable" 
which applies to all predicates. One can indeed say that the 
predicate "impredicable" cannot be stated of itself, if it is defined as 
above, because when applied to itself the definition makes no sense. 
From this it does not, however, follow that "impredicable" would now 
in fact be impredicable. Suppose that "impredicable" were completely 
meaningful, then the definition would require that it apply to itself, 
but also would require that it does not apply to itself. Hence it 
remains meaningless and therefore cannot be applied to this 
predicate. 

The "paradox of finite definability", too, stems from a circular 
definition. Every number is either finitely representable or it is not, 
in so far as we accept that the concept of "finite definability" is well-
defined. The diagonal argument of Cantor gives a method for 
deriving, from the finitely definable numbers, a definite number 
which is not finitely definable. By means of the definition of this 
number, it does appear to be finitely represented after all. 

This, however, is not the case, for the definition would require 
something impossible of the number which it purports to define, 
were it to be expressed finitely. Namely, on the one hand it would 
not belong to the finitely representable numbers: But on the other 
hand it would indeed be finitely represented, by means of the given 
representation. No number, however, can satisfy such a definition. If, 
however, the definition is grasped purely in thought, so that as such 
it is not presented "in finite representation", then it is free from 
objection and there is nothing that can be brought against the 
existence of the number in question (see Finsler [1926a]). 

We may consider further the Russell paradox of the class of all 
classes which do not contain themselves, where one first assumes 
that every class is defined by means of a property possesed by its 
elements. 

If the property of a class, through which its elements are 
determined, applies to itself then the class too must itself belong to 
its elements, i.e. it must contain itself. Now does there exist a class of 
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all classes which do not contain themselves? The assumption of its 
existence leads to contradiction; for it could not contain itself, but 
again certainly would have to contain itself. On the other hand, 
however, "not to contain itself' is a definite property of a class ancl 
consequently a class certainly ought to be definable by means of this 
property. 

The Solution of this paradox cannot depend upon the questions: 
How are classes related to their elements? Are they associated 
concepts, or not? If each property really defines a class, then this 
must also hold for the specified property. 

In order to find the Solution we must investigate whehter it 
really is the case that every property defines a class. For this, 
however, it is necessary to know exactly the concepts "property" and 
"class". Indeed it is not a matter of knowing what these concepts 
mean "in themselves" but how they are defined. The concepts are 
fixed only through their definition and they also have meaning only 
in so far as the definition has meaning. If the concept given by means 
of the definition does not coincide with the concept which one wants, 
then there remains nothing more to do than to modify the definition 
and seek for a more suitable one. If, however, the concept wanted is 
logically impossible; that is, if one imposes mutually contradictory 
requirements on the concept, then one will not succeed in obtaining a 
suitable, logically unobjectionable definition for it. 

Let us first of all assume that a definite domain of concrete things 
be given. In this domain a property E is defined as soon as it is 
determined for every Single one of the given things whether E 
applies to it or not. We can now stipulate that to each such property 
there corresponds a class K, and that those things to which the 
property E applies are to be designated as elements of the class K. 
The domain of things under consideration is in no way altered by 
this stipulation and there are thus no difficulties here. 

We can, however, no longer reason in this way when we want to 
consider arbitrary classes of classes. The concept of the class in the 
previous example was tied to the concept of property, and this was 
based upon a given domain of things. If, however, these things are 
themselves arbitrary classes then the concept of a class is already 
needed for their definition. Thus it must be defined by means of 
itself. Now suppose that we succeed in determining definitely the 
concept of a class by means of a circular definition, or what amounts 
to the same thing, through an implicit definition. Then this would 
only show the inadequacy of the earlier definition so that the concept 
of the propery would not in fact satisfy the previous requirement 
that to every property there corresponds a well-defined class. In 
other words it is not possible to determine the concept "class" in such 
a way that to arbitrarily given classes there always corresponds a 
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definite class which contains them as elements. The proof of this is 
just the fact that there cannot exist a class whose elements are 
precisely the classes which do not contain themselves. If one wanted 
to define a new class by means of the property of being an arbitrary 
class which does not contain itself, then the attempt would contradict 
itself. Because, of course, one assumes that all classes are already 
present so that there cannot exist any more that are new. 

That classes are not defined by means of properties, or cannot be 
so defined, stems from the fact that the properties still do not have 
any definite meaning as long as the domain of things to which they 
refer has not been fixed. So, in particular, the property of being a 
class which does not contain itself only has a meaning when the 
concept of a class has been fixed. If one defines the concept "class" 
without using the concept "property", then subsequently in the 
domain of all classes one can fix the concept "property" in the earlier 
way, and one then finds that there does not correspond a class to 
every property. A definite property does indeed give rise to a 
subdivision within the domain: the things to which it applies and 
things to which it does not apply. One surely is used to seeing classes 
defined in this way. Attention must, however, be paid to the fact that 
in this case one imagines things of the domain as something other 
than subdivisions or properties of these things; in some instances 
identification of the subdivisions or properties with the things 
themselves could turn out to be impossible. 

If one wanted to determine the concepts "property" and "class" 
simultaneously in such a way that to every property there 
corresponds a class and to every subdivision of the classes there 
corresponds a property, then one would not succeed because of a non-
satisfiable circle. Here attention must be paid to the fact that in 
certain cases circular definitions can indeed possess unique 
solutions, but that they need not be satisfiable in every case. 

In summary, we can therefore say: The concept "class" (and 
similarly the concept "property") is not given in itself but is 
something which first of all has to be defined. Every attempt at 
defining the classes generally in such a way that they can also occur 
arbitrarily as elements, necessarily leads to a circular or implicit 
definition. It is impossible to determine the concept "class" 
consistently in such a way that arbitrary classes together always 
represent the elements of a definite class. 

There still remains the question as to how the concept "class" can 
be appropriately defined. Not all requirements can be satisfied, so 
certain restrictions are necessary. In many cases one will be able to 
avoid the circle by admitting only those things as elements that are 
independent of the concept "class". Such a restriction is, however, too 
narrow, especially for the purpose of set theory, which has to do with 
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analogous problems. Here, however, one can impose another 
restriction which allows one to investigate those peculiarities that 
are caused by the circle and to uniquely determine the concept of a 
class. 

The difference between classes and the sets of mathematics lies 
essentially in the greater exactness of the latter. Lipps says that the 
existence of a class only presupposes the existence of some elements 
having a certain property but not necessarily the existence of all of 
them. It has to be remarked that either all the elements are 
determined when the property is specified, or the property (and also 
the class) will not have a well-defined meaning. Sets too are only 
related, though in a definite way, to their elements, without actually 
"consisting" of them; for, there is an essential difference between the 
one thing, the set, and its elements, which are usually many things. 
It is not necessarily excluded that a set contains itself, that is, that it 
be one of its own elements. 

Now if one wants to define sets exactly for mathematical 
purposes, then one must also sharply circumscribe the domain of 
things which are permitted to occur as elements. Otherwise the 
concept of "all" sets does not have any definite meaning. The above 
restriction, which leads to an exact definition, consists in the fact 
that one admits only sets as elements; that is, one considers only sets 
of sets, without requiring that sets collected together arbitrarily 
always form a set. Through every set, however, its elements must be 
uniquely determined. If one adds a further, suitable stipulation 
which determines when two sets are to be considered as being 
identical, and then collects all sets which are possible in this way, 
then one obtains as can be shown, a unique and consistent system, 
onto which further investigations can be built (see Finsler [1926b] 
and [1925]). Genuine antinomies can no longer occur here; for a real 
contradiction in logic itself is not conceivable. Apparent 
contradictions can occur only through mistaken reasoning. In 
particular, the antinomy of the set of all ordinal numbers disappears 
as soon as one keeps to exact definitions. The more exact 
development, however, leads too far into the realm of pure 
mathematics. 
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Are There Undecidable P ropos i t ions? 

1. Formal Systems 

Approximately 18 years ago I showed that in formal systems of a 
general kind one can specify propositions which are not decidable by 
means of formal proofs within the systems themselves, but which 
nevertheless can be decided by virtue of their conceptual content (see 
Finsler [1926a]). A formal proof was considered to be admissible for 
the purpose of this argument only if its interpretation constituted a 
logically unobjectionable proof. 

Later Gödel [1931] attempted to specify similar formally 
undecidable propositions within the system of Principia Mathematica 
and other related systems. In order to do this he constructed a 
proposition which asserts its own formal unprovability. By 
considering the conceptual content of such a proposition one sees 
that it must be true when the system is consistent, thus it is really 
unprovable and therefore also undecidable. That is to say, were it to 
be false then it would have to be formally provable and consequently 
true. It is remarkable that some who have rejected informal 
reasoning in general accept such arguments as valid in this special 
metamathematical case. 

Now for Gödel, however, a formal proof must satisfy certain 
merely formal restrictions without regard for its actual meaning. 
This notion of proof, customary in the study of formal theories, does 
not present any hinderance to an attempt to represent Gödel's 
argument within some formal system. Furthermore, the argument of 
Gödel for formal unprovability given above is conceptually correct. 
These facts, however, contradict the claim that a Statement 
completely independent of formal provability has been found. It 
follows that Gödel has by no means demonstrated the existence of 
propositions which are formally undecidable in an absolute sense. 
But he has shown that the systems which he has taken into 
consideration are formally inconsistent if they permit certain simple 
implications which are conceptually correct. 

If these systems are to be consistent then at very least one of 
these conclusions must be absent. Actually in the usual system (as P. 
Bernays has confirmed for me) the following implication does not 
occur: 



64 Philosophy 

"From the provability of A follows A", 

or in symbols: 

"Prf(A) -> A". 

One is thus not allowed to employ this implication within the 
framework of formal systems, at least not for proofs! 

If, however, this implication were to be incorporated into the 
system then the concept of provability would change and indeed, as 
has already been remarked, to such an extent that either the 
formally undecidable proposition is no longer representable or eise 
the system becomes inconsistent and consequently every proposition 
becomes provable. In order to avoid this one has to prohibit the 
incorporation of this implication. 

It should be self-evident that a true proposition becomes 
"undecidable" when a method of argument necessary for its proof has 
been ruled out. If one forbids the use of the principle of complete 
induction then already a + b = b + a is an "undecidable" proposition 
for the natural numbers. 

The "inconsistency" of certain more recent formal systems has 
been demonstrated by S. C. Kleene and J. B. Rosser [1935]. This 
could very well give the impression that the contradictions in these 
systems stem from the inclusion of inherently inadmissible methods 
of argument. According to the foregoing remarks, however, this does 
not need to be the case. Inherently correct conclusions relating to the 
formalization, can become false through just this formalization, so 
that therefore the formalization does not lead to "greater exactitude" 
but to disintegration. 

If, however, in considering proofs one observes not the form alone 
but, as was remarked at the beginning, pays attention to the inner 
meaning and Contents then the contradictions disappear. One no 
longer needs to set up prohibitions and can in fact specify formally 
undecidable propositions. But if one attempts to represent the proofs 
for the truth of such propositions formally, then the attempt 
miscarries, because these proofs become inconsistent with respect to 
Contents through just this formalization; thus they are false and 
therefore invalid. The proofs become false through their formal 
representation in the same way as the assertion "I am silent" 
becomes false the moment it is spoken out aloud. 

As can be seen these things are very closely connected with the 
logical paradoxes; firm foundations cannot be found as long as no 
clarity exists concerning them. Now I have already stated repeatedly 
how the paradoxes are to be solved ([1925], [1927b], [1941b]); it 
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appears, however, that this has hardly been noticed or understood. I 
will therefore discuss the paradox of the "liar" here. 

The conviction that every paradox must be soluble puts one on 
the road to success also concerning propositions which assert their 
own unprovability in an absolute sense. In this way one obtains 
information concerning the existence, or non-existence of absolutely 
undecidable propositions. 

2. The Paradox of the "Liar" 

One could ask whether the paradoxes belong to philosophy 
rather than to mathematics. In philosophy many opinions can arise; 
by contrast, in mathematics only a rigorous, objective distinction 
between true and false is allowed to exist. This point of view can, and 
shall be adopted in connection with the treatment of the logical 
paradoxes; these are therefore to be counted as being a part of pure 
mathematics. 

It is possible to specify propositions which assert their own 
falsity, for example the sentence "I lie", or the assertion "The 
assertion standing here is false". The question arises as to whether 
such a proposition is true, false, or perhaps even meaningless. 

One reasons as follows: If the given proposition were to be true 
then it would have to be false, but if it were false then it would have 
to be true. Thus the proposition can be neither true nor false. 
Therefore it is meaningless, or has at very least "no well-defined 
meaning". 

This line of thought, however, is not tenable, for it leads into a 
contradiction. We will define any proposition to be meaningless if it 
is neither unambiguously true nor unambiguously false. A true 
proposition is not meaningless: similarly, a false proposition is not 
meaningless. 

Now, if the given proposition were meaningless then it asserts 
something that is unambiguously false; for the assertion states that 
the proposition is false, and thus not meaningless. So it follows that 
if the proposition were meaningless, then it would be false. And yet 
the proposition cannot possess a "variable" meaning, if only because 
of its invariability. 

The right Solution follows from the Observation that, when 
considering an assertion, one has to pay attention not only to the 
linguistic expression but also to the real meaning. Every assertion 
has the meaning that what it asserts is true. If, however, it is 
asserted at the same time that just this meaning is to be false, then 
there are two contrary assertions and these, taken together, yielcl a 
false assertion. "A and not-A" is always false, quite irrespective of 
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whether A or not-A is true. The given proposition is therefore 
unambiguously false. (A similar argument appears in Geulincz 
[1663].) 

From the fact that the proposition is false it does not follow, 
however, that it must then nevertheless be true. For a proposition 
can very well be false even though part of what it states is true. In 
connection with this proposition one can distinguish between an 
explicit and an implicit meaning. The explicit meaning that the 
proposition is false would be true if taken on its own, but together 
with the implicit meaning, that it is true, a falsehood arises. If I say, 
however, that the assertion "I lie" is false, then this is a true 
proposition. Whether the proposition relates itself to itself or to 
another proposition constitutes an essential difference. 

One of the main reasons for the emergence of the paradoxes is 
that the implicit statements, which really are present, are overlooked 
or not taken into account, and this danger will at all events only be 
intensified by a purely formal treatment. 

Some writers object to considering the conceptual content, saying 
it is too "vague". They hold the opinion that only a purely formal 
representation can be sufficiently "precise". This striving to 
completely replace the meaning by means of formulas resembles an 
attempt to judge the colors of things solely by their form. It is 
understandable that people who are color-blind possess a great 
interest in such "formal" definitions; but that this is the best way in 
which to arrive at information concerning colors can very well be 
open to doubt.1 

In the domain of conceptual content there is no distinction 
sharper, more precise than that between true and false. This is clear 
if one adheres to the law of the excluded middle, investigating only 
those things to which this law applies. Everything must be true or 
false: nothing can be both without destroying the whole. One also 
recognizes that every logical paradox must be soluble. A 
contradiction cannot arise out of nothing: it can only come out where 
it has already been put in. One thus only has to avoid contradicting 
oneself in order to maintain consistency in mathematics. 

3. Absolute Decidability 

From now on we will consider unambiguous propositions, that is 
to say, propositions that are either true or false. Every assertion 

1 See Tarski [1935], From §1 of this work it emerges tha t he cannot decide which of 
the propositions introduced by him are actually t rue and which false. 
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which is not unambiguously true or unambiguously false will be saicl 
to be "meaningless". 

Now consider the following proposition:2 

"The assertion standing here is unprovable." 

Take not only the formal proofs, but ideal proofs also, provided 
that they are conceptually correct. This last requirement means that 
from the provability of a proposition its truth must follow. This is a 
necessary condition which has to be placed upon the concept of 
provability. No further restrictions shall be imposed upon this 
concept. Otherwise it would be conceivable that a proposition which 
could not be proven under such restrictions, would turn out to be 
provable without them. We want to avoid this possibility. Thus we 
consider the concept of provability in its greatest possible scope. 

It is piain that one cannot simply require that every true 
proposition be provable. On the contrary, one can pose the question: 
do true propositions exist which are not provable? These would be 
absolutely undecidable propositions. 

If the proposition given above, which asserts its own 
unprovability, were to be true then it would be an example of such 
an undecidable proposition. Yet in order to know that it is true one 
would have to prove it and this is impossible according to what it 
states. So this is not a possible approach to solving the problem. 

Let us investigate the proposition more closely. Right away one 
comes up against a paradox. That is to say, the proposition cannot be 
meaningless; for it would follow that the assertion carried by it and 
the proposition itself would be true. A meaningless proposition 
certainly is unprovable; for a provable proposition is true, and 
therefore not meaningless. 

On the other hand, if one now makes the assumption that the 
proposition and the assertion carried by it are false then it would not 
be unprovable but provable, and consequently true. If, however, the 
proposition cannot be meaningless nor false, then it must be true. So 
we seem to have proven that the proposition is true. Yet, for an 
unprovable assertion, no such proof can exist. 

In order to solve the paradox one must once again make 
allowance for the implicit Statement of the proposition which 
requires that the assertion be true. It must now be investigated 
whether or not this assertion is compatible with the explicit 
Statement that it is unprovable. With this we return to the earlier 
problem: do there exist true but unprovable propositions? 

2 A similar formulation is to be found in Hilbert/Bernays [1939, 269-270], 
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In the first instance let us make the assumption that such 
propositions cannot exist. Then it would follow that the two concepts 
"true" and "unprovable" are incompatible with one another. The 
implicit and explicit statements of the given proposition would 
contradict each other; the proposition itself would be false. It can also 
be seen that the proposition can be false only if the two concepts are 
incompatible with one another. Otherwise, the falsity of the 
proposition, the explicit assertion itself, would imply that the 
proposition is not unprovable but provable and consequently not 
false. 

Let us now make the opposite assumption: that there do exist 
true but at the same time unprovable propositions. Then it follows 
that the two concepts, true and unprovable, are compatible with one 
another and the given proposition cannot be false. It has already 
been shown that the proposition can not be meaningless; so it follows 
that, under the assumption made, the proposition must be true. 

We can now draw the following conclusion: If the absolute 
undecidability of some unambiguous proposition is provable then the 
last assumption above is also provable, i.e. it is then provable that 
there does exist at least one true but at the same time unprovable 
proposition. Either that proposition or its negation would be an 
example. This means, however, the proof just given for the truth of 
the proposition which asserts its own unprovability has been 
completed. This yields a contradiction. We thus have the following 
result: There does not exist any unambiguous proposition for which 
the absolute undecidability is provable. 

There still remain two possibilities, namely: The proposition: 
"There do exist unambiguous, but absolutely undecidable 

propositions" is either false, or it is true but unprovable. 
Were it provable, then one would have a proof that there do exist 

propositions which are true and at the same time unprovable. This, it 
has just been shown, leads to a contradiction. 

In the first case, the proposition is false and it is then still 
possible to prove this. Whereas in the seconcl case it is at best 
refutable. This can now be expressed as follows: The assumption that 
there do not exist unambiguous, absolutely undecidable propositions, 
ancl thus that there do not exist any "insoluble mathematical 
Problems", is not refutable; it is therefore "absolutely consistent". 

Hilbert [1926] posed the problem of showing that a corresponding 
assumption does not yield any "finite" contradiction; as can be seen 
the problem allows a Solution in the absolute sense. 

If one adopts the Standpoint that every "absolutely consistent", 
i.e. non-refutable proposition, may be taken to be true then every 
false proposition would have to be refutable and consequently every 
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true proposition provable; here the concepts "true" and "false" are 
seen as absolute opposites. The proposition which asserts its own 
unprovability is then necessarily false. It has still to be investigated, 
however, whether this Standpoint is justified. 

A contrary assumption would mean that: There does exist a false 
proposition which is not refutable. But what does it mean that a 
proposition is false? In mathematics it can have no other meaning 
than that it contains a contradiction. 

Now in mathematics we make frequent use of the assumption 
that something existent can also be taken as being given. This is in 
any case a self-evident principle in so far as it concerns the abstract 
property of being given and not that of practical constructibility.3 

Were a contradiction contained within a proposition to be given, 
then the proposition would be refuted by means of this very 
contradiction. 

Thus it follows that every false proposition really is ideally 
refutable. Yet if the negation of a proposition is refutable then the 
proposition itself must be provable. So it follows further that every 
true proposition is provable and consequently every arbitrary, 
unambiguous proposition is ideally decidable. 

The problem of ideal decidability can thus be solved very simply 
in this way, by leading everything back to the meaning of the 
concepts; the previous considerations are not superfluous however: 
they touch upon other conclusions which are also significant for 
practical decidability. 

One may raise perhaps the following objection: It is conceivable 
that a poposition A contains no contradiction and that the negation 
of A, that is not-A, is likewise consistent. It is then only with the 
"conjunction" of both, "A and not-A", that a contradiction arises. How 
is the decision then to be met? 

In this case the proposition A cannot be false, but as not-A is also 
not false, A cannot be true. Thus it follows that A is meaningless. 
The conjunction of a meaningless proposition with its negation still 
yields a contradiction. 

On the other hand the assumption that A is meaningless does not 
yield a contradiction. That is to say, if A were not meaningless then 
it would follow that A would have to be either true or false. This; 
however, would then mean that either A or not-A contains a 
contradiction which is, by hypothesis, not the case. 

But does not a meaningless assertion have to be false, since it 
implicitly asserts, contrary to fact, that it is true? 

3 This principle applies to set theory though it is not related to the axiom of choice. 
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For propositions which really represent assertions this 
interpretation is in fact correct; but then there would not exist any 
meaningless assertions, only ones that are true or ones which are 
false and so the case just considered could not occur. Actually, if the 
proposition A represents a genuine assertion and does not contain a 
contradiction then the negation of A asserts that, in spite of this, A is 
false. The negation thus contains a contradiction and is consequently 
false. The negation of A always states: A is false. The whole 
proposition must be negated and not merely the explicit Statement 
contained in it. It contradicts the concept "false" to say of a consistent 
assertion that it is false. 

On the other hand it is possible to think of propositions which do 
not have the meaning that their unrestricted truth ought to be 
asserted. According to our determination such statements are to be 
designated as meaningless, even though they may have a meaning in 
other contexts. 

The parallel axiom could be taken as an example, or even the 
proposition: 

"The number n is an even number." 

In this example everything hinges upon the meaning given to the 
sentence. If nothing further is stated concerning the number n, and 
the proposition is meant as an unrestricted assertion, then it is false; 
for the number n could equally well be an odd number. If, however, 
the proposition signifies only an assumption, a postulate, condition, 
or stipulation then it is not an assertion. As an assertion it is 
meaningless, even though it can be meaningful as an assumption. 

4. Pra-ctical Decidability 

The results obtained so far still do not supply a means whereby a 
decision can actually be carried out for an arbitrary proposition. 
However, they are certainly of more than mere theoretical 
significance. In particular they can act as a stimulus (see Hilbert 
[1900]) in approaching difficult problems and could facilitate their 
Solution. After all, it is certainly much easier to seek and find 
something when one knows that it is there than when one has to 
reckon with the possibility that it may not exist at all. 

The following inference is of further practical significance: For 
any unambiguous proposition whatever, that is for one which is 
either true or false, it is impossible to prove its absolute 
undecidability. 
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Thus, Cantor's continuum problem can by no means be disposed 
of by showing that the conjecture concerned is neither provable nor 
refutable. 

Further one finds that: If it can be shown for an unambiguous 
proposition that it is not refutable in any way, then with this it has 
already been proved. 

As soon as one restricts the concept of provability these results 
immediately become modified. One obtains what at first seems to be 
a very difficult paradox which does indeed admit ideal, mental proofs 
that can be carried out by human beings. In order to make the 
matter clear I will restrict provability to the means I, myself, have 
available. 

Consider the proposition: 

"I cannot prove the assertion standing here." 

Is this proposition true, false or perhaps even meaningless? The 
earlier results all break down as I can certainly not decide every 
proposition. However, the proposition given cannot be meaningless 
for otherwise it would definitely be true. The implicit assertion, that 
the proposition is true, does not stand in contradiction to the explicit 
assertion. And from the assumption that the proposition is false it 
follows that the explicit assertion taken for itself is false, i.e. it 
follows that I can prove the proposition. But a provable proposition 
must be true. With this I seem to have proven that the proposition 
must be true, and this can certainly not be the case; for if it is true 
then I cannot prove it. 

The Observation that my personal capabilities for accomplishing 
the task are not sharply defined yet play an important role here 
cannot in itself resolve the paradox. The question as to whether the 
proposition really is true or false remains. 

In order to find the Solution it is good to Orient oneself by means 
of a similar paradox. As has already been shown above, if a 
proposition which asserts its own formal unprovability is true, then 
the corresponding proof can only be free from objection if it is not 
carried out in formal representation. Now here the case is similar: 
The proposition given above is true; however, the corresponding 
proof can only be correct as long as I do not carry it out myself. As 
soon as I attempt to prove the proposition I become entangled in 
contradictions and the proof becomes false. Thus it really is 
impossible for me to prove the given proposition. That I cannot prove 
it is of course something which I can establish; for, from the 
assumption that I could prove it, there immediately follows a 
contradiction. With this, however, I have by no means proved that 
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the proposition is true, for were it false then I would still be unable 
to prove it. 

May I, in spite of this, assert that the proposition is true? 
Answer: Yes, but only because I have to believe the proposition. I 

know that the proof for the proposition is correct as soon as someone 
other than myself carries it out. Others can very well accomplish 
what I cannot; this proof, however, is something that I cannot carry 
out. Anyone eise who wants to prove the proposition which states 
that I cannot prove it does not become entangled in contradiction. If I 
know, however, that others can prove a proposition which I cannot 
prove then there remains nothing more for me to do than to believe 
this proposition. 

That there do exist things which one cannot prove but which one 
must nevertheless believe has often been asserted. It is remarkable, 
however, that here we are concerned with a definite statement for 
which this can be established. 

There still remains the question as to whether the foregoing 
results are not strongly restricted by this last result, as we cannot 
shed our human imperfections. Actually, it is highly probable that 
one can form propositions of such a kind that their proofs turn out to 
be so complicated in practice that it becomes impossible to succeed in 
bringing them to completion (cf. C6r6sole [1915]). The foregoing 
considerations show, however, that propositions which we 
demonstrably cannot decide must in some way or other refer to our 
capabilities for accomplishing this task, and that thus they do not 
belong to pure mathematics. This holds true also in the case in which 
one could show directly that it is not possible for us to carry out 
certain definite and in themselves perfectly possible mathematical 
Operations, nor reduce them to performable Operations. Seen 
mathematically these would only constitute an assumption and not a 
proof. 

If, on the other hand, one restricts oneself to purely formal 
representations then one really is tied to an actually countable 
domain, and thereby much that is of great value is lost. 
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platonische Standpunkt in der Mathematik" (Einem Vertreter der klassischen 
Mathematik, Herrn R. Nevanlinna zum 60. Geburtstag gewidmet). Dialectica 10 (1956), 
250-255. 

The Platonistic Standpoint in Mathematics 

In Wittenberg^ interesting paper Über adäquate 
Problemstellungen in der Mathematischen Grundlagenforschung 
[1953] and in the subsequent discussion (Wittenberg et al. [1954]) 
there is a clear description of a view of mathematics which is called 
naive or uncritical Platonism, "inhaltlich", theological, Piatonic 
philosophy, classical philosophy, and by E. Specker [1954] the "an 
sich" philosophy. It is said, for example, in Wittenberg^ answer that 
these views embrace the opinion "that this philosophy seizes upon 
objective relationships, that in itself it describes a factual Situation, 
which as such remains removed from our powers of discretion". This 
"Piatonic Standpoint" is, however, rejected even if with regret. Why? 
First of all because of the an tinomies! 

Does one always have to be frightened out of one's wits in this 
way by the antinomies? Do people still believe in ghosts? Is it still 
thought that a contradiction can emerge anywhere, in places where 
it has not already been put in? If the antinomies really were to make 
the Piatonic conception impossible, then one would have to be able to 
give at least one antinomy which cannot be explained in a reasonable 
way from a Platonistic point of view. Which antinomy is it? An exact 
and thoughtful answer to this question would interest me very much; 
no such antinomy has been known to me for decades. 

Bernays does, to be sure, ask how far the set theoretic 
antinomies necessarily result from Platonism and holds it to be 
probable that there is a form of the Piatonic view that does not lead 
to the antinomies. But, this does not require "an extraordinarily 
radical revision" of this philosophy, as Wittenberg expresses it, and 
in my opinion one does not even have to seek out this revised form; it 
is much simpler than that. The only naivety that has to be 
abandoned is the belief that many sets can always be formed into a 
Single set. If one straight away considers many things as being one 
thing, then it is no surprise that contradictions can be derived. There 
is an essential difference between sets that contain many elements 
and those that have but one. But also the assumption that to many 
sets there must always exist one set which contains exactly these as 
its elements is objectively false, as examples show. This must not be 
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postulated in any way whatever, whether our philosophy is Piatonic 
or not. It is precisely in set theory that the relationships really are 
such that this assumption is not satisfied, and there is no cogent 
reason for holding on to this assumption. 

Otherwise, I am, on the whole, thoroughly in accord with 
Wittenberg's critical remarks and should like, only for the sake of 
clarity, to mention a few points where differences arise. 

Thus, after what has just been explained, one will not be able to 
say that the antinomies result as "an inevitable consequence of the 
naive Piatonic Standpoint quoted"; one could say "as being an 
appcirently inevitable consequence". Further, the assertion that the 
set of numbers of the second transfinite number class does indeed 
exist, but not the set of all transfinite ordinal numbers, is just as 
little of a dogmatic character as is the assertion that 17 is a prime 
number but 15 not. These are simply facts. That in the one case one 
can perceive these facts a little more easily than in the other is of no 
importance. If it were true that we have at our disposal no criteria of 
any sort whatever for answering such questions, why is it then that 
this is not also true for the whole of set theory? Why is it that 
absolute anarchy does not rule throughout set theory? Why is it that 
someone who is convinced of the non-existence of an actual infinity 
can go to work using transfinite ordinals? Mere criteria for 
constructibility do not suffice in set theory; rules of construction 
could be rendered incapable of being carried out and thus lead to 
contradictions. But there are the criteria of truth and consistency: 
Are they to count for nothing? 

When Bernays remarks that mathematical results are in no way 
put into permanent suspense because of the controversies 
surrounding the foundations, one can very well agree. But once 
again, how is this so? The reason is, of course, that in mathematical 
research one knows objectively what is true and false, without any 
special criteria and without codification. Why should this knowledge 
not be applied to foundational studies, set theory in particular? 
Every codification surely is a form of dogmatism as long as it is not 
supported by genuine insight. 

In elementary calculation there is a prohibition against dividing 
by zero. This is not a dogma nor an arbitrary restriction but a well 
justified rule whose violation can easily lead to mistakes and thus to 
contradictions. 

In the development of calculus, naive Operations with 
infinitesimally small quantities proved to be very useful. In spite of 
this, it came to be rejected, because it became clear that these 
quantities, with the properties desired of them, could not be said to 
exist; they had no unobjectionable definition. 
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Similary, naive caleulation with imaginary numbers proved very 
useful. In this case, however, these calculations could be retained, in 
spite of all sorts of doubts, because it was shown that the imaginary 
numbers can be defined consistently, and thus they really do exist. It 
suffices that the definition of the numbers be consistent; then one 
need not fear that a contradiction will arise in the course of a long 
computation. 

Naive Operations with sets have lead to contradictions and must 
therefore be reformed. It suffices to define sets consistently but 
without arbitrary restriction, and one then no longer needs to fear 
any antinomies. 

In spite of these various constructions, the pursuit of antinomies 
seems to me to resemble the attempts at circle-squaring. A genuine 
antinomy would certainly mean that something exists and at the 
same time does not exist, and this is certainly absurd. By using false 
inferences one easily attains the goal in both cases. The only 
question is whether or not the errors are recognized. 

Specker gives an instructive example in his inaugural lecture 
[1954], He considers the set Q of those sets which do not contain 
themselves and are elements of another set; he then suggests that no 
contradiction arises with this definition. Accepting Q, however, 
would mean that there is no universal set. The assumption that the 
universal set exists, "for itself alone", is also free of contradiction. It 
is then deduced that from the consistency of the assumption of the 
existence of Q the existence of the universal set cannot be deduced. 

It appears here as though one could consider either the set Q or 
the universal set as existing, according to one's choice, but not have 
both at the same time. "Existence", however, ought not to mean the 
membership of a set in some model of an artificially restricted set 
theory but its existence in an absolute sense. This means that it 
exists within the domain of all possible sets. The "possible" sets are, 
however, the ones which are consistent, that is precisely those for 
which the assumption of existence does not contain a contradiction. 
The existence of a set cannot depend upon our arbitrary choices, and 
thus cannot depend upon whether we assume some other set as 
existing or not. Therefore the question arises as to whether the set Q 
or the universal set exists. 

The universal set is defined through the fact that every set 
belongs to it. From this requirement it cannot be concluded that 
some set does not belong to the universal set; this certainly ought to 
be very clear. This means, however, that the definition of the 
universal set does not contain a contradiction as long as the concept 
of a set is itself free from contradiction, and every consistently 
defined set is accepted. To exclude the universal set would be 
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arbitrary. In the domain of all possible sets, therefore, the universal 
set must exist. 

It is very different with the set Q. Since every set is an element 
of the universal set, Q is merely the "set of all sets which do not 
contain themselves"; this is not consistently defined and therefore 
does not exist. 

It is not true that the assumption of the set Q "in itself alone" is 
without contradiction. If all men in a certain region of the earth are 
black, then it does not follow from this that the assertion "all men are 
black" cannot be contradicted. Since there do exist men who are not 
black, the assertion made is false, and thus inconsistent. Similarly, 
there can indeed exist a restricted model of set theory in which there 
does not occur a universal set, it may have Q instead. From this it 
does not follow that the definition of Q alone is consistent. On the 
contrary, it stands in contradiction to the general definition of a set. I 
do not see how one can honestly assert the existence of the set Q or 
reject that of the universal set. 

I have given a consistent definition for sets in "The Infinity of the 
Number Line" [1954], Objections against this have been raised by 
Kreisel [1954], These rest upon the misunderstanding that set theory 
has to be a formalism instead of a theory ordered according to its 
meaning. Thus, it is not true that all the Operations of set theory as 
they are to be found, for example, in Ackermann [1937], are 
permitted. In the domain of the circle-free sets these Operations can 
be carried out, and are thus permitted, but in the domain of all sets 
they are not always possible and therefore are also not permitted. 
The axiom of choice, as well, is satisfied for circle-free sets [1926b, 
§17], but not for arbitrary sets [1941b]. The existence of the second 
number class follows quite analoguously to that of the sequence of 
natural numbers [1954], 

When one reads further in Kreisel: "But for general M and N, 
M - M', N ~ N' may be separately consistent, though M' = N' is 
refutable", then in any event M = N is intended. If there do exist 
"logics" in which the relation of identity derived from equivalence is 
not transitive, then these could not be very useful for an exact 
knowledge. In a logic that recognizes meaning one has that two sets 
are always identical whenever possible, this means that the sets M 
and N are identical, provided they possess exactly the same 
properties. That is to say they are the same if the assumption that 
they possess the same properties does not contain a contradiction. 
Given that M = N, M = M\ N = N' it then follows that M' = N' holds. 
Consistency is to be understood in an absolute rather than formal 
sense, and therefore a contradiction cannot suddenly result from 
this. 
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With respect to the existence of the number line Lorenzen [1955] 
is of the opinion that many of the details in the carrying out of the 
proof do not appear convincing to him. It would be of interest to learn 
the reason for this, even for one of the details. 
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Platonism After All 

It is particularly pleasing to see it clearly stated, in Wittenberg^ 
"Why No Platonism?" [1956], that mathematicians would like to be 
Platonists, if only they were able. This wish can really be fulfilled, 
however, because the objections against it are not valid. 

It is not a relevant objection merely to State that there are many 
mathematicians at present who do not accept the Piatonist point of 
view. Hundreds of authors against one are not necessarily in the 
right. A mathematician, conscious of his responsibility, will not 
declare a proposition, for which he must be answerable, to be true 
just because many others do so, but only because he has convinced 
himself of its truth through his own deliberations. The truth of a 
proposition or theory ought indeed to lead ultimately to a 
"consensus"; the converse, however, need not hold! If there is no 
unanimity concerning the antinomies yet, then this signifies only 
that these things have still not been pursued with adequate 
understanding. 

That there does exist exact mathematics, which includes the 
infinite, and that we can know it, may very well be considered as 
being a miracle, in just the same way as it is also a miracle that 
there do exist elephants, and that we can recognize and describe 
them. One difference between mathematical facts and those of 
natural science consists, however, in the fact that the former are of a 
eompelling nature, that is, they simply cannot be other than they 
are, whereas the latter are of a more accidental nature. They could 
very well be different than we encounter them here. Natural science 
depends upon Observation, whereas in mathematics only consistency 
decides. One could also very well say that mathematics is "necessity 
in thought". Yet, this should not lead to the notion that mathematical 
truths are dependent upon our thinking and therefore on the State of 
our brains. If this were so, then it would belong to the natural 
sciences. Mathematical facts are, however, independent of time, thus 
they are eternal, whereas the occurrences of nature are transient. 

According to the conception put forth here, the "existence" of a 
mathematical object has a unique meaning corresponding to its 
consistency. There is no rational number whose Square equals 2, ancl, 
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in exactly the same way, there is no set which possesses exactly the 
ordinal numbers as its elements. 

Now, an antinomy would result if, as Wittenberg [1956, 258] 
believes, we were to see ourselves being compelled "to 'form' 
mathematical objects (for example, the set of all transfinite ordinal 
numbers), that is, to affirm their existence". This ideal confuses the 
class of the ordinal numbers and the differently defined set. In an 
exact set theory sets do not arise through an act of collecting, but are 
mathematical objects with definite properties, in exactly the same 
way as the natural numbers are mathematical objects with definite 
properties. 

Thirty years ago, I indicated the difference between sets and 
classes [1926b]. At that time this was characterized in a review 
(Skolem [1926]) as a "word game". I can in no way agree with this or 
with other aspects of the review. Today the distinction between sets 
and classes is commonly made. Wittenberg's arguments show clearly 
that people even now do not make the real difference clear to 
themselves. 

If one respects this distinction and pays attention to it, then one 
can freely collect sets together into a class. There is no more reason 
to suppose that a class of sets is a set than there is to suppose that a 
set of natural numbers is a natural number, or that a flock of sheep 
is a sheep. The sets so defined as mathematical objects suffice 
completely for the whole of mathematics and do not lead to 
contradictions of any sort. 

Now, however, in spite of this, in order to "save" the antinomies, 
one coulcl require that the classes are themselves "objects" which can 
be collected together to produce objects of a new kind. Not only is this 
potentially dangerous, but it also has nothing to do with 
mathematics proper. Yet since this mode of argument is often 
brought forward it must be explored. 

It is quite right that such considerations should not lead to a 
contradiction. This can only hold, however, when one does not 
impose unreasonable conditions. 

If certain things are given, such as natural numbers or sets, 
then, as has already been observed, one can directly consider them, 
or an arbitrary selection of them, as a class. This does not mean, 
however, that one is allowed to iterate this process arbitrarily, by 
considering the class itself as being a Single thing. If one does want 
to iterate the process (it is really unnecessary to do so), then one has 
to ask oneself how far it is permissible "to consider many things as 
one thing". One must also watch that in doing so one does not 
become entangled in contradictions or non-satisfiable circles. 

Many things and one thing are not the same; that would plainly 
constitute a contradiction in itself. In addition, many things 
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"considered as one thing" is something different from the same 
things "considered as many things". As has been remarked earlier, 
whether a set possesses many things or only one thing as an element 
constitutes an essential difference. If one does not pay attention to 
such differences, then it it clear that one approaches antinomies. 

If one wants, however, to "collect together" many things into one 
thing, then this is an operation which in some instances cannot be 
carried out, because of a circle. To collect together exactly those 
collections which do not contain themselves is impossible. This is not 
an antinomy, but a fact. Now, one may perhaps say that the 
collection does not have to be formed, but is already there. One must 
keep in mind that something which is permissible in simple cases 
need not hold in general. The collection referred to is not already 
there; this really is so. It cannot be formed: the assumption of its 
existence contains a contradiction. If one thinks that the collection is 
formed simply through the fact that one speaks of all those 
collections mentioned, then this makes just as little sense as if one 
were to think that a greatest natural number is already formed by 
merely speaking of it. 

When Wittenberg [1956, 261] says at the end of his remarks 
"that here fundamental demands which we are accustomed to place 
upon our thinking are at stake", this cannot very well mean that 
from now on contradictions ought to be allowed in mathematics, but 
only that one is not allowed to impose non-satisfiable conditions. 
Thus, in particular, one is not allowed to require that an operation 
must be performed even when this is impossible because of 
circularity. 

To the points brought forward by Bernays [1956] I should like to 
make the following remarks: 

1. In order to be able to know what is true and what is false in 
set theory one has to have won back the certainty lost through the 
antinomies. After clarification of the antinomies, however, nothing 
stands in the way. This does not mean that one could then solve 
every Single question; this is not the case elsewhere in mathematics 
either. The form of the Solution is, however, in my opinion, uniquely 
determined, though differences of opinion still arise concerning this. 

With respect to the set of all sets there is certainly a great 
difference whether in the wording of a definition no direct 
contradiction is evident, or whether, as is the case here, it is directly 
evident that the definition does not contain a contradiction. The sets 
which are consistently definable are within the system of all sets, 
With this the question as to the factual Situation is settled. 

2. By "Platonism" one can of course understand various things. 
In the case before us this expression only means that in the realm of 
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set theory too, objective relationships do exist; it is not meant that 
sets would have to be given to us in some way other than our 
knowledge of their existence. 

3. Consequently, quite another question is how we know these 
objective relationships and how are we able to base classical 
mathematics on them? Here we depart from the usual methods. 

That the concept of the circle-free sets, indispensable for a proper 
founding of mathematics, has found a certain amount of attention 
after thirty years is also very pleasing. What is called "made piain by 
means of formalization" (Bernays [1956, 264]) refers to Ackermann's 
[1956] deduction of a formula corresponding to the axiom of infinity, 
using specific formulas which refer to the property of being a circle-
free set. The actual existence of infinitely many things cannot be 
guaranteed in this way. This turns mathematics into a "doing as if', 
pretending there are infinitely many things. I cannot accept this. 
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Introduction 

The earliest of Finsler's set theoretic papers, On the Foundations 
of Set Theory, [1926b] remains the most important. The original title 
included the words: Part I. Sets and. their Axioms; he expected to 
develop the theory further in a second part. When Part II finally 
appeared in [1964] it contained replies to some of Finsler's critics 
rather than positive developments of the theory. Part II is the last 
paper in this section, they have been ordered chronologically, but it 
is also of less mathematical importance than the others. Large parts 
of it are polemical; these parts reveal a dramatic clash between 
formalism and Platonism that bring a better understanding of the 
history of the foundational crisis. This relatively long paper also 
contains scattered but interesting, positive developments of the set 
theory presented in Part I. Before undertaking Part II one should see 
section VI below, of this introduction, for some background remarks 
on the axiom of completeness. 

We believe, however, that most of the mathematical Contents 
originally planned for Part II were eventually published in the other 
papers that are translated here. 

Of these other articles Concerning a Discussioti on the 
Foundations of Mathematics [1941b] is the most elementary because 
it presupposes only a knowledge of Finsler's axioms and does not 
concern the more difficult topic of circle-free sets. It provides some 
interesting examples to Supplement On the Foundations of Set 
Theory, Part I, including a treatment of the Burali-Forti paradox and 
a refutation of the global axiom of choice. 

Many readers may find it helpful to begin Concerning a 
Discussion even before finishing On the Foundations of Set Theory. 
The discussion of circularity at the end of On the Foundations is 
often found to be difficult and one could very well delay it and 
profitably pursue Concerning a Discussion first. 

The definition of circle-free sets is the most fascinating, difficult, 
fertile, and controversial idea to be found in On the Foundations of 
Set Theory, Part I. The two articles, The Existence of the Natural 
Numbers and the Continuum [1933] and The Infinity of the Number 
Line [1954] cannot be fully understood without having first wrestled 
with Finsler's definition of circular and circle-free sets. They are not 
otherwise difficult to read however. These two papers are very 
similar. The Infinity of the Number Line is the report of a lecture; it 
is the more relaxed of the two articles. The subject matter is so 
remarkable that it seemed best to provide translations of both. 

The issues raised in The Infinity of the Number Line are still as 
fresh as they were in 1954; this paper will surely repay the effort 
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required to grasp Finsler's intention in defining the circle-free sets. 
The entire enterprise of producing simple, intuitive axioms, then 
defining the concept of circular and circle-free sets, and finally 
cleriving the axiom of infinity, is truly astounding. This argument is 
destined to be of philosophical interest regarclless of whether 
mathematicians take further interest in it. A book by Edward Nelson 
[1986], for example, maintains that the axiom of infinity is a 
mathematical superstition. 

"Faith", Nelson writes in [1980, 80], "in a hypothetical entity of 
our own devising, to which are ascribed attributes of necessary 
existence and infinite magnitude is idolatry". 

How can one reply to such finitist views? In ordinary 
mathematical practice one simply does not bother much with them. 
But the times demancl that we do more than merely dismiss them on 
aesthetic grounds; there must be a rational treatment. Rational 
grounds for the acceptance of an infinite set are clearly too important 
to ignore. 

In this connection the concluding remarks of The Infinity of the 
Number Line are memorable: "Think of the infinite as being locked 
up. If we want to obtain it, then we have to unlock it. In order to do 
this we need a key, and this must be turned. This turning is circular 
in nature. If no satisfiable circle is allowed, we cannot obtain the 
infinite: Should it be allowed, the infinite is obtained". 

The remaining sections of this introduction are like footnotes to 
topics which may present difficulties or which have arisen in the 
mathematical literature. They have headings: beta relation, classes, 
the first axiom, and so on, so that one can turn directly to a topic 
that is of interest. The final section concerns Ackermann's set theory. 

I. Beta Relation 

Finsler always wrote the relation converse to set membership. In 
doing this he emphasized sets as axiomatically given objects rather 
than collections as in a naive theory. 

II. Classes 

It is taken as intuitively clear that one can form collections of 
given objects: Classes are collections of this kind. To collect things in 
this way is part of the basic logic that is indispensible to science. 
When we treat collections as objects, however, capable themselves of 
being elements of complex collections, we are thinking in a circle. 
These complex collections, the pure sets, must be introduced 
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axiomatically: being essentially circular they cannot be understoocl in 
terms of something eise. In this way we arrive at the need to 
axiomatize set theory. 

III. Non-well-founded Sets 

The usual sets of Zermelo-Fraenkel set theory are regulär (or 
well-founded) as required by the axiom of regularity (also called the 
axiom of foundation). Non-well-founded sets were introduced by D. 
Mirimanoff [1917a], [1917b], [1920], They are permitted within the 
Finsler theory. After all, in this set theory consistency is the 
Standard by which we recognize existence. 

Well-founded sets must not be members of themselves, x e x; 
members of members, x e y e x; nor, in general, can they be part of a 
cyclic membership chain, x e y e z e ... e x . In addition, a well-
founded set cannot participate in an infinite membership chain: 

... 6 Xg € X9 6 Xj 6 Xq. 

In other words, well-founded sets are those having only finitely long 
membership chains within themselves. 

IV. The First Axiom 

Finsler's Axiom I is: For arbitrary sets M and N it is always 
uniquely determined whether M possesses the relation to N, or not. 
It has been called the axiom of "definiteness". We usually think of it 
as insisting that sets be "well-defined". Some have written of sets 
being "sharply" defined. In any case, these sets are not "fuzzy". 

To understand the axiom it is helpful to consider classes which 
fail to satsify its demands. The class of sets used to carry out 
Russell's paradox is a classic example. 

Let x e R if and only if x & x. There is no harm in writing 

R = { x : x <t x } 

provided we remember that a mere class is given by these braces. 
Russell's paradox is an argument which proves that R cannot be 

a set. If it were a set it would have to be well-defined, in the sense of 
Axiom I. We would have to be capable of determining in principle 
whether or not R e R. But neither R e R nor R <£ R is possible. 
Hence R cannot be a set. 
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The Burali-Forti paradox is a proof that the class of all ordinals 
is not a set. 

Cantor's argument that there is no largest cardinal can be used 
in the Finsler theory to show, not that there is no universal set, but 
that certain subclasses of the set of all sets can not be formed into 
sets. 

V. The Axiom of Identity 

The second axiom teils us the circumstances under which two 
sets are to be recognized as identical. This axiom is subsidiary to 
Axiom I and applies only to things that meet its test. 

The need for such an axiom can be easily seen by observing that 
otherwise the sets J - {J} and K = {K} could be taken as distinct. 

There is a complication concerning this axiom: The original 
version contained an minor error which seems to have been 
mentioned by Finsler in [1928], so that the paper as it appears here 
still possesses a minor omission. The difficulty was independently 
detected by Peter Aczel in [1988] and he supplied a version of the 
axiom that seems to fix everything with the minimum disruption to 
Finsler's basic point of view. This error and Aczel's correction are 
described under the heading "the first version" below. This correction 
only is needed when one attempts to put section 7 of "On the 
Foundations" into modern notation, perhaps for the purpose of 
combinatorial study. One should certainly examine Finsler's paper 
before concerning oneself with the matter. The paper is not 
misleading as it stands; an awareness of Aczel's correction is unlikely 
to help the beginning reader. 

Complicating the whole matter is the fact that Finsler later made 
a significant change in the Axiom of Identity. 

We shall say that there are two versions of the axiom. The first 
version concerns isomorphic sets. It has the character of graph 
theory. Any such method of stating the Axiom, Finsler's original one, 
Aczel's modification and so on, will be considered as belonging to the 
first version of the axiom. The second version involves consistency 
and is without graph theoretic associations. 

Finsler's First Version of the Axiom of Identity 

In this section the isomorphism needed for Axiom II will be 
described in modern terms. 
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The transitive closure of x is written in Finsler's notation. 
Let us also call it "TC(x)" so that we have available a suggestive 
notation that requires no subscripts. The class TC(x) consists of 
elements of x, elements of elements of x, and so on. Finsler defines it 
as the intersection of the transitive sets that contain the elements of 
x. Literally x itself is not in TC(x) = £x. 

The fundamental idea of Axiom II, that isomorphic sets be 
identified, might be written as follows: x = y if 

(*) < TC(x), e) = ( TC(y), e ). 

This use of model theoretic notation would have been out of place 
in 1926. Its use, however, reveals a difficulty. To explain the matter, 
it is helpful to use graph theoretic vocabulary. The elements of TC(x) 
can be taken as nodes of a directed graph having arrows directed 
from sets to their elements. 

We have observed that ä; is not actually in TC(x). When x is an 
ordinary, well-founded set, the graph in (*) would become 
disconnected, a disturbing though not necessarily incorrect State of 
affairs. 

When one considers non-well-founded sets, one finds, by an 
example given in section 8 of "On the Foundations" that (*) is 
actually unsatisfactory. Consider the pair of non-well-founded sets 
A = {A, B} and B = {A}. These sets will sometimes be called Fibonacci 
sets because of an analogy between A and B, on one hand, and the 
mature and immature states of Fibonacci rabbits respectively. 

One has that TC(A) = TC(B) = A. Thus we have that: 

< TC(A), e) = ( TC(B), e >. 

But A has two elements and B has but one. We wish to accept 
these as two distinct sets; so we must have A = B. This means that 
(*) will not do as an account of the isomorphism required by the first 
version of the Axiom of Identity. 

Let us now use the term "transitive hull of x" to refer to the 
transitive closure of x, with x itself adjoined. Abbreviate it TH(x) = 
TC(x) u {x}. 

Now, let us modify (*) so that 

(**) < TH(x), e,x) = ( THiy), e,y) 

becomes the condition for making x = y. 
In this form we are dealing with rooted, directed graphs. 

Returning to the Fibonacci sets A and B which were used previously 
as an example, we could not have A = B by the Standards of (**), 
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unless the isomorphism (**) were to match the two distinguished 
nodes, A and B, with each other. This is impossible since A has two 
elements (immediate descendents in the graph) whereas B has but 
one. 

The explanations given here, of (*) and (**), were known to 
Finsler; we understand (**) to be the notion of isomorphism used in 
"On the Foundations of Set Theory", [1926b], 

To see that a difficulty remains, one first of all forms the set 
J = {J}. Now consider the class D given by: D = {J}. Surely D is a set 
by the Standards of Axiom I. Intuitively, D - J. In fact, this is 
required by the property of extensionality, proposition 5. But (**) 
alone does not literally permit this conclusion. The transitive hull 

TII(J) = TC(J) u {J] = {J} = J 

has a single element; but the hull of the hypothetical set TH(D) = 
{D, J) has two. They cannot be isomorphic. 

Strangely, (*) works well and gives D = J. From these facts we 
may judge that the proper account of isomorphic sets is a 
combination of (*) and (**) together. 

Define a new hull, T(x) of x as follows. If 3c is not in its own 
transitive closure (not "essential in itself' to use Finsler's term), put 
T(x) = TH(x). If x is in T(x), then introduce a new object X. Replace 
the x that is the root of the graph TH(x) by the X; no other changes 
are to be made. In this case, £ will still appear somewhere in TH(x) 
since it is essential in itself. Now say that 

(***) < T(x), e ) = < T(y), e > 

implies that x = y. 
This new version (***) is the proper form of the axiom of identity. 

We do not need to introduce the roots of these graphs into the 
structural notation of (***) as was done in (**): An isomorphism of 
the graphs will necessarily carry one root into another. We have 
insured, through the definition of T(x) that the roots of these graphs 
do not appear on the receiving end of any arrows in the directed 
graph. 

This explanation of Axiom II can be used to make it properly 
precise for combinatorial studies. 

The account here is like that of Aczel [1988] who also supplied 
his own, original criterion of set identity that is stronger than the 
one here. Aczel's stronger criterion identifies more sets than (***) 
and thus leaves fewer distinct sets after the identification is made. 
So there are more non-well-founded Finsler sets than Aczel sets. In 
addition, an intermediate class of non-well-founded sets was defined 
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by Dana Scott [1960] in a lecture that was unpublished but which 
nevertheless existed in some libraries as a mimeographed pre-print. 

In summary then, there are various possible alternatives for 
formulating a graph theoretic version of an isomorphism axiom of set 
identity. Finsler's original idea in [1926b], as amplified in (***) 
above, will always be of interest because it provides the greatest 
possible variety of sets. It gives the most liberal and expansive 
universe. But, as will be explained below, there are also certain 
advantages to accepting fewer sets as was done by Scott and Aczel. 

It happens that Finsler later changed his version of Axiom II in a 
way that permits fewer distinct sets than he originally allowed. Thus 
he tended in the direction that was later adopted by Scott and Aczel. 
The second version of Axiom II, however, was not given in graph 
theoretical language at all. 

Finsler's Second Version of the Axiom of Identity 

The second version of Finsler's Axiom of Identity is: "The sets M 
and N are identical whenever possible". This means that if it is 
consistent to identify two sets M and N, then M = N. This new 
version of the Axiom of Identity, Axiom II, appeared abruptly in "The 
Infinity of the Number Line" [1954], 

One needs to keep in mind that the meaning of such an axiom 
depends upon the theoretical context in which it appears. This 
becomes piain when one considers the fact that Finsler was not the 
first to employ this axiom. 

The axiom of identity, stated just above, is equivalent to an 
axiom employed by Felix Bernstein in [1938] which was also entitled 
the "Axiom of Identity". 

Bernstein added the axiom to ZFC where it tends to produce a 
more complete theory. For example, in a set theory with this version 
of the axiom of identity, the continuum hypothesis can not be 
independent. For, suppose the continuum hypothesis were not 
refutable. Then we may consistently suppose that 2® = co^ Thus, 
using the axiom of identity, we may actually suppose that 2C0 = co^ So 
the continuum hypothesis would have to be either provable or 
refutable. 

In Bernstein's theory the term "consistency" refers to provability 
in Bernstein set theory itself. The theory is fundamentally circular in 
nature; and, in fact, this can be used to show that it is not 
axiomatizable as a theory in a formal language. The whole purpose of 
this axiom for Bernstein was that his theory should tend toward 
completeness. 
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Finsler cannot have had the same motive. His Axiom III, rather 
than Axiom II, is a principle of completeness. We suspect that the 
axiom was revised because the original version came to be seen as 
overly generous in the variety of sets that it allows; this is hinted at 
in Finsler [1964], 

To judge from the experience of Jon Barwise and John 
Etchemendy [1987], and of Barwise [1988], in which non-well-
founded sets were applied to model theoretic matters, a more 
restrictive universe of non-well-founded sets may turn out to be the 
most natural for some applications. Barwise made use of the 
"Solution lemma" of Aczel [1988, 13]. This lemma is conveniently 
available for the narrow class of non-well-founded sets given by 
Aczel's criterion of set identity but not for the wider class of sets 
given by the first version of Finsler's axiom of identity. 

For example, among the Finsler sets (and among the previously 
mentioned sets of Scott as well) there are a pair of "Fibonacci" sets 
that have already been introduced: 

A = {A, B} and B = {A}. 

Now, in Aczel's set theory it is consistent with the membership 
relation to identify J = {J} = A = B. We understand Finsler's second 
version of Axiom II to require this identification also. 

It seems a shame to lose such delightfully interesting sets. But 
now consider a stranger example: Let A and B be the Fibonacci sets 
just defined; and let T= {T, B}. The class Tis a Finsler set according 
to the first version of the Axiom of Identity, as elaborated by (***) 
above. But the set equation x - {jc, B} has two solutions: A and T. 
Now, perhaps there is no necessary reason that sets should have to 
be uniquely representable as solutions to such equations involving 
braces; but it is certainly peculiar if they do not. And we can readily 
imagine that this State of affairs might make applications of non-
well-founded sets distinctly clumsy. 

In summary, there are at least two possible motives for changing 
the Axiom of Identity from its first to its second version: It allows a 
new kind of completeness argument; and it gives a more tractable 
class of sets for applications. It seems implausible to think that 
Finsler might have had the first of these motives. There is no reason 
to think that he saw Bernstein's paper which is so unknown that we 
do not know of any reference to it. Finally, we should like to repeat 
that even if one were to regard the second version as the true Axiom 
of Identity, the first version would retain considerable interest. 
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VI. The Axiom of Completeness 

The third axiom resembles a dual of the axioms of "restriction" 
such as the axiom of constructibility. One might call it an axiom of 
expansion. It asks for the maximum class of sets compatible with the 
previous two axioms. 

The most antithetical objection to Finsler's axioms, due to the 
algebraist Reinhold Baer [1928], asserted that Axiom III, the axiom 
of completeness, is incompatible with the first two axioms. In other 
words, Baer maintained that the set of all sets, A, cannot exist even 
as a class. Baer's argument was described by Georg Unger [1975b], 
but there is no English account of it. Here is the argument. 

To prove: The class of all Finsler sets A does not exist. 
Suppose A exists. Form the Russell set 

R = {xeA:xex}. 

Either R is a set of A or not. If it is, Russell's antinomy 
can be carried out in A. If it is not, then it is well-defined 
according to the Standards of Finsler's first axiom; for the the 
sets of A must be well-defined, so that for any element of A 
either x e x or x € x. But this means that R e A by axiom III. 
Thus there is a contradiction. This completes the argument. 

If this argument were correct then one could not form the Finsler 
universe A at all: Axiom III would be absurd. 

The argument however does not actually apply to Finsler's 
theory. The definition of R does not necessarily produce a set in the 
Finsler theory, only a class. If R were a set, which it is not, it would 
have to be in the set of all sets already. How is it conceivable that a 
set exists outside the collection of all sets? 

Finsler quickly replied to Baer's argument in [1928], The reply 
was blunt: "It is perfectly clear", he wrote, "that if two deductions A 
and B mutually contradict one another, then it cannot be said 
without further ado that B is an error in deduction because it stands 
in contradiction to A, but it follows in the first instance only that A or 
B must be false." 

He went straight to the flaw in Baer's reasoning: "It consists in 
the fact that no proof is given for the existence of the set with which 
the system is to be extended [...]. If one wants to "construct" a set (or 
any thing), one has to ask oneself whether the construction can be 
carried out." 
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In other words, Baer's argument produced a "contradiction" by 
adding a class to the universe while claiming that it is a set in the 
theory. 

One curiosity concerning this objection is that it was anticipated 
by Finsler and is discussed in section 11 of On the Foundations. We 
can only imagine that Baer never penetrated as far as section 11 of 
this paper but simply believed that the axioms must be inconsistent 
after briefly pursuing them. It also appears that Finsler was so 
surprised that anyone would make this claim that he quite forgot 
that he had already treated Baer's line of thought. 

It is odd to find that Baer adhered to his argument in a brief note 
[1928b] in which he claimed that R is a Finsler set simply because it 
is defined in terms of Finsler sets. 

Finsler obviously thought that Baer's argument was of no 
consequence even though Baer had not admitted an error. There is a 
brief mention of the matter at the beginning of The Existence of the 
Natural Numbers and the Continuum [1933] which appears in this 
volume; he probably feit that the matter was closed. It turned out 
otherwise. 

One of the startling things about the whole matter is that the 
first edition of Fraenkel and Bar-Hillel [1958, 23] endorsed Baer's 
argument. Their few words on the subject may have been the sole 
account of Finsler's theory in English. They wrote: 

From the first two axioms it follows easily that any 
consistent model of the Finsler system admits a further 
extension [...]. On the other hand, the third axiom postulates 
the completeness of the system [...]. But in view of the result 
just mentioned the third axiom entails a contradiction [...]. 

The "result just mentioned" refers specifically to Baer's erroneous 
argument. This passage, quoted above, also repeats Fraenkel's 
opinions of [1928b], Now, Baer's mistaken argument can be 
understood as the hasty opinion of a young mathematician who 
avoided discussing the matter subsequently. Fraenkel's repetition of 
it is less easily understood. 

Apparently surprised at the longevity of Baer's argument, 
Finsler took up the topic once more in "On the Foundations of Set 
Theory, Part II" [1964], 

I did not think that I would have to answer yet again in 
relation to the short remark of Baer [...] as surely everyone 
who thinks the matter over correctly must see which of the 
two is right. Now apparently no one has given the matter 
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enough thought and it has simply been concluded that he 
who had the last word is right. 

It may be that Fraenkel sensed that there was a theorem 
beneath the surface of Baer's argument and, joined with a formalist 
bias against Finsler's Platonism, assumed that the argument was 
correct. If this conjecture is right, we should be able to find a correet 
theorem along the lines of Baer's objection. 

Baer's argument can, in fact, be adapted to establish the 
following: If Finsler set theory is consistent, then it is not 
representable in the first order predicate calculus. 

Only a sketch of a proof will be given here. To begin, take a 
model of Finsler set theory which, by way of contradiction, we 
suppose to be a first order theory. Let this model take the place of 
the entire Finsler universe, A, in Baer's argument. One needs to 
check that such a model for a first order theory is really a set in the 
sense of Finsler. Having done this, call the model M. A relativized 
Russell set R of Baer's argument is definable in M but not present 
within it. Thus the model would not satisfy Axiom III after all. 
Since this is a contradiction, it must be that Finsler set theory cannot 
be a first order theory. This completes the sketch. 

One would therefore expect that someone holding an implicit 
belief that all consistent theories are formalizable, could jump to the 
conclusion that Finsler set theory is inconsistent. This seems to 
account for Baer's objection. 

When the whole matter was brought to his attention again upon 
the publication of Finsler [1975], Baer declined to discuss the 
argument after so long an interval, nor did he agree to its being 
reprinted. 

VII. Consistency Proofs 

After he had stated his three axioms, in section 11 of On the 
Foundations, Finsler gave a consistency proof for them. The proof 
simply takes the direct union of the various classes which form 
partial subsystems. 

In the next section it will be explained how it is that Finsler's 
consistency proof is so surprisingly brief. Consistency arguments are 
usually either reductions, in which the consistency of one theory is 
given relative to another, or they are proof theoretic analyses of 
formal systems. The very idea that a consistency argument could be 
both absolute and brief will seem peculiar to a formal habit, of 
thought. So it is quite natural that a critic of this set theory should 
focus on the consistency argument of section 11. The rest of this 
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section concerns a critique of this consistency argument. The whole 
matter is of considerable interest; and it seems to suggest that 
consistency proofs may ultimately contain a philosophical 
component. 

Ernst Specker, in [1954], made a interesting criticism of the line 
of reasoning used in this consistency proof. Specker did not positively 
assert that A, the Allmenge or set of all sets, does not exist, as was 
attempted in Baer's mistaken argument. His objection simply casts 
doubt on Finsler's consistency argument. Specker's objection will be 
described below. The reader should first thoroughly familiarize 
himself with Finsler's system before considering these examples. 
The account given here is an abbreviated one; one cannot really 
judge the matter without some previous experience in the theory. 

As the objection appears in print, Specker defined a class, let us 
call it Qi here, whose existence as a set is incompatible with that of 
A, the "Allmenge". He can then challenge the Finsler theory to 
produce some Standards for prefering one as a set over the other. To 
make this challenge he presented pairs of classes which taken alone 
appear consistent as sets but cannot bot.h be sets simultaneously. 

Consider the following definition of a class; 

x e A if and only if x = x. 

Of course, this gives the class of all sets. 
Now form the class Ql given by: 

x e Ql if and only if (x i x) and there is a y with (x ey). 

In itself, Q1 is consistently defined. In a partial universe it may very 
well be that Ql is compatible with all the other sets present. Let us 
take it to be a set then. But now, some partial universes contain A 
and others contain The two sets cannot be joined in a common 
universe: Qj is a kind of dual to the empty set, it belongs to nothing, 
whereas A contains all. Suppose we were to have A and Qi present 
together. Then Qi e A, so the second conjunct in the definition of 
Q1 becomes true and may be dropped. We are back to Russell's 
paradox again. 

What Standards of priority are we to use in forming sets? How 
are we to know whether to accept A or Q^ ? 

Finsler mentioned this objection in [1964] and simply defended 
the existence of A, the set of all sets. Evidently he held that that its 
manifest consistency, and therefore existence, served also as a proof 
of the non-existence of Q v 

Specker then modified the argument (from this point on the 
whole matter is entirely unpublished) by choosing a slightly different 
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class, to be called Q2• This revised definition no longer produces a 
conflict with the universal set, A, but still presents the same type of 
challenge to Finsler's consistency argument. 

x e Q2 if and only if (x <z x) and there is a y with (y = {x}). 

The whole affair is essentially the same but it is no longer so easy 
to simply assert that all sets form singletons as it was to assert that 
all sets are members of something. It can be done however. Finsler, 
in On the Foundations showed that {*} exists whenever x is a circle-
free set and mentions in section 4 of Finsler [1933], translated here, 
that he has proven that {x} exists whenever x exists, even when x is 
circular. He describes the proof as "not simple". We have not seen 
Finsler's argument but know another by Guerino Mazzola which is 
unpublished as well. Mazzola's argument constitutes a proof in the 
Finsler theory that Specker's class Q2 does not exist. So the status of 
Q2 as an objection to the Finsler theory is no different from that of 
Ql> except that someone defending the theory has been forced to 
work a good deal harder. 

Specker's construction in general is: 

x e Q if and only if (x <£ x) and P(x). 

It can be modified by introducing other set theoretic properties 
P(x). The resulting problem for the Finsler theory: Does Q satisfy 
Axiom I? may be difficult or easy, interesting or tiresome, depending 
on P, but all problems of this type that we have investigated have 
been solved. Furthermore, none of them really undermine one's 
confidence in the theory, because they present a pair of incompatible 
classes for which one can instantly teil, intuitively that one exists 
and the other does not. All constructions known to us that involve 
the formation of two equally attractive but logically incompatible 
classes are so artifical that the Finsler theory rejects both; the 
construction of J. Hintikka [1957], for example, requires a universe 
of bounded, finite size. 

It is possible to give a very simple example which illustrates 
these features clearly. Consider the following class of one element: 

x e W if and only if (x = 0) and x = y, for every set y. 

The class W is compatible with itself alone. Were we to begin 
constructing the universe and happened to accept W as being the the 
very first creation of a set theoretic genesis, then the whole 
enterprise would come to a halt with no further ado. We would be 
left with a universe consisting of W alone. 



98 Foundations 

Now, it is intuitively piain that the existence of {0} shows that W 
does not exist. Yet, if a radical nominalist were to insist that 
mathematics is a mere game played with marks on paper and that he 
sees no grounds for supposing that {0} exists in preference to W, is 
there anything in the Finsler theory that would persuade him 
otherwise? The attempt to answer this question has left us with the 
feeling that philosophical matters enter into what appears to be a 
purely mathematical question. 

In the next section we will see that those familiar with the 
Finsler theory are not disturbed by the fact that it rests on a 
consistency argument that appears fragile to some observers. In fact, 
they find themselves frequently concerned with consistency in the 
form of showing that sets exist by the Standards of Axiom I. This 
point of view will be elaborated in the next section. That still leaves 
Specker's construction as a potential source of problems for the 
Finsler theory and, perhaps, as a indicator of the region in which 
philosophical differences of opinion can arise. Finsler's theory was 
called "strongly impredicative" by Bernays in [1956] who addecl "this 
comment in itself doesn't signify an objection". Specker's objection is 
directed toward this impredicative qualities of the theory. 

VIII. Existence 

In the last section Specker's objection to Finsler's consistency 
proof was presented: In it two mutually incompatible classes are 
defined. The consistency proof itself does not contain criteria to 
decide between them. Finsler, in turn, regarded the decision as to 
which, if either, of these two objects is to be accepted as a set as 
something external to the argument for consistency of the axioms. 

Two Swiss mathematicans, Herbert Gross and Georg Unger, an 
algebraist and geometer respectively, who maintained experience 
with Finsler set theory provided some comments on the theory upon 
the publication of Finsler's collected papers [1975], From the 
remarks of Unger [1975a] one sees that Specker's objection to the 
consistency proof, is, from the perspective of the Finsler theory, 
actually a source of independent, set existence problems to be dealt 
with, but without bearing on the consistency of the theory as a 
whole. Unger explained the matter as follows. 

In order to follow the course of Finsler's reasoning it is 
indispensible to assume the possibility of speaking of all the 
objects (and these alone) that satisfy Axioms I and II 
consistently. In the wake of the foundation crisis there arose 
the latent question of whether individual things compatible 
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with I and II could be incompatible when one tries to think of 
them coexisting with one another, perhaps revealing hidden 
contradictions. I understand Finsler to mean that one does 
not accept only those things that satisfy Axioms I and II 
alone but those which are also free of contradiction among 
themselves. The question of whether or not such a system is 
accessible to the human mind is answered in a concrete way 
through presenting the empty set along with other 
elementary structures as examples. Certainly they are in the 
union of all mutually compatible objects satisfying Axioms I 
and II. Thus it is non-empty. 

IX. Circular Sets 

Any set, S, that contains itself is circular. Even if some set 
essential in S contains itself, we should regard S as circular, because 
it is ultimately dependent on a membership cycle. The problem now 
is to say which of the remaining sets, those of the class S , to use 
Finsler's notation, are also circular. Their circularity depends on the 
definitions which characterize them. A definition must be something 
that can actually be held in thought, otherwise it would not give a 
set according to Axiom I. But we do not mean to specify a particular 
syntactical form that a definition must take: a definition is 
"conceptual" rather than "linguistic" to use terms from the 
philosophical section of this book. 

Of course, a set could have many definitions, of quite varied 
kinds. The common, familiar sets possess linguistically expressible 
definitions, a fact which stands to the commercial benefit of the 
manufacturers of pencils and sticks of chalk. 

Returning to the concept of a circle-free set, we have seen that 
"Je 

certain sets, those outside of Z , are obviously circular. In section 13, 
Finsler defines circularity for the sets of E too. These are said to be 
circle-free if everything in their transitive hulls is independent of the 
concept "circle-free"; otherwise they are circular. 

Some readers find Finsler's definition thoroughly confusing. It 
may help to Substitute some other expression for the term "circle-
free" as it appears in quotation marks. For example, let us introduce 
a new, ideal object into set theory and call it "X". It helps to think of 
it as predicate, though the word "predicate" has an unintended 
syntactical connotation. In any case, set theory now involves 
membership (the denotation of e) and the mysterious X class, which 
we may indicate by writing "X". Certain classes, the class X itself for 
example, are definable using X. Others, like the empty set, are 
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definable without reference to X. Of course, we have at the back of 
our minds that X is the circle-free sets. But we do not need to say or 
even think so. 

Any class can now be used as an expansion of set theory. That is, 
let C be a class and A the class of all sets. Any definition, Def(X), 
possibly involving X can be carried out with X understood as being 
equal to C. Let us say that our definition gives Set(C) when X= C. 

To repeat, Def(X) is a definition involving the unspecified notion 
X. When X is understood to be C, then this definition may yield a 
specific set, provided that Axioms I and II are satisfied; in this event 
let Set(Q be that set. 

If Set(Q is the same set regardless of what C may be, then we 
shall call Set(C) "circle-free", because it has a circle-free definition, 
one that does not really depend on X. It may also have circular 
definitions, those that vary as X varies, but possessing circle-free 
definition makes a set circle-free. 

The usual definition of the empty set shows that it is circle-free. 
This definition is even expressible in first order set theory with 
bounded quantifiers and without any occurrence of "X' taken as a 
predicate in an expansion of the language of first order set theory. 
Such classes are invariably circle-free sets. 

Let U be the class of circle-free sets. One can proceed to show 
that it is a set by Axiom I. It certainly is circular; as a set it may 
enter into the definition of other sets. Whenever these newly defined 
sets really depend on U (perhaps the class X is involved in their 
definitions) then they too will be, in general, circular. 

The empty set also has circular definitions. Let T be the set 0, if 
0 £ X; and let T = {0}, if 0 e X. This definition, call it Def(X) defines 
different things, depending on X. If X = 0, then T - 0. If X = A, the 
"Allmenge" or universe, then T = {0}. So Def(X) simply does not give 
us a circle-free object. When we put X-U, however, we have 0 e X 
by our previous Observation that 0 possesses a circle-free definition. 
Thus we may say that T = 0, when X is the particular class that it 
was intended to be. This whole affair is merely a circular definition 
of the empty set. 

We believe these ideas are the most important part of this 
foundational portion of Finsler's work. They seem to enter into 
unexplored territory, except, perhaps, for the treatment of 
Ackermann. 
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X. Ackermann's Theory 

The set theory of Wilhelm Ackermann [1956] was an attempt to 
find axioms which are closer in spirit to the ideas of Cantor than the 
usual set theories. Ackermann's theory, however, unlike Finsler's is 
formalized and attempts to avoid unsatisfiable circles by syntactical 
devices. There are other differences too. 

In Ackermann's system, for example, a subclass of a set must be 
a set. While in Finsler's theory the mere fact that something is 
included in a set does not in the least guarantee that it is itself 
sharply defined. The Allmenge, A, is a set and certainly many of its 
subclasses, the class of the Russell paradox conspicuously among 
them, do not form bona fide sets. 

Once we leave the realm of well-founded sets the Ackermann 
theory offers no guidance. There is, for example, no way to prove 
even that the J-set, J = {J}, exists, either as a set or a class. Probably 
for this reason research into the Ackermann theory, W. Reinhart 
[1970] or C. Alkor [1982] for example, tends to treat the theory with 
an axiom of foundation, either for sets or classes, adjoined. 

These differences notwithstanding, the Ackermann theory often 
reminds one of Finsler's. To see that there is a relation between the 
two, take Ackermann's predicate "M", a primitive concept holding for 
sets, to refer to the circle-free sets of Finsler. That is, look at 
Ackermann's theory as a formalized approximation to the study of 
circle-free sets, U. Now, the parallels between the two become more 
striking. The class of all sets in Ackermann is not a set: The set of 
circle-free sets in Finsler is not circle-free. The axiom of regularity 
was not used by Ackermann: The axiom of regularity is false in 
Finsler set theory. The axiom of infinity was derived by Ackermann 
using an argument identical to that of Finsler. A peculiarity 
involving the axiom of replacement in Ackermann's theory noticed by 
Azriel Levy [1959] manifests itself in the circle-free sets too. 

This relation has been noticed before. Paul Bernays in [1956, 
264], the same year in which Ackermann's paper appeared, wrote: 

[...] the mentioned separating off of the circle-free sets 
can also be found in an analogous procedure - made clear 
through formalization - in a recent axiomatization of set 
theory by Ackermann. 

Finsler probably thought that Ackermann had specifically 
attempted to treat the circle-free sets without saying so. In the same 
discussion from which Bernays was just quoted Finsler [1956b] 
replied: 
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That the concept of circle-free sets, indispensible for a füll 
understanding of mathematics, has found a certain amount 
of attention after thirty years is also very pleasing. What is 
callecl "made clear through formalization" points to 
Ackermann's deduction of a formula corresponding to the 
axiom of infinity, using specific formulas which refer to the 
property of being a circle-free set. The actual existence of 
infinitely many things cannot be guaranteed in this way. 
This turns mathematics into "a doing as if', pretending that 
there are really infinitely many things. I cannot accept this. 

Of the various studies of the Ackermann theory it is the 
investigation of natural models as in Rudolf Grewe [1969] and John 
Lake [1975] that are most related to issues that arise in Finsler set 
theory. Even though these natural models do not take place in a 
context in which the Axiom of Completeness, Axiom III, holds, they 
do at least embrace an initial segment of the Zermelo-Fraenkel 
universe. 

Herbert Gross [1975, vii] in the preface to Finsler [1975] wrote: 
"An axiomatic set theory which refers to objective mathematical 
things, the conceptually fascinating idea of circle-free sets, and 
Finsler's approach to the foundation of mathematics are all worthy of 
investigation." We have also found that the history of these ideas is 
fascinating as well. 

XI. Large Cardinais 

One of the mathematical observations in Part II [1964, §61] is 
that there are circular ordinals. Among the consequences is the 
absolute existence of an inaccessible cardinal. 
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On t h e F o u n d a t i o n s of S e t T h e o r y 

Part I. Sets and their Axioms 

Introduction 

Pure mathematics operates with objects which are either 
immediately given, determined axiomatically, or with objects derived 
from these by specific constructions. 

Examples of such objects are: the natural numbers; the real or 
complex numbers; the real or complex functions, in particular the 
analytic functions; the points, lines and planes of Euclidean or 
projective spaces; and so on. 

Each of these examples, understood in the usual way1, concerns 
well-defined systems, which are in no way merely arbitrary. 

A system of similar exactitude has not yet been found for set 
theory. 

On the one hand, one must very often admit quite diverse 
elements into our sets, without ever limiting the domain from which 
they are chosen: On the other hand, one seems to obtain such a great 
variety of sets that they eventually cannot be collected together, even 
when starting from a fixed domain. 

Restricting the formation of sets by axioms such as those given 
by Zermelo [1908] offers no guarantee of a fixed universe of sets. 
Even if one assumes that such a universal system exists, it would 
certainly be dependent upon the arbitrary choice of the axioms. 
These disadvantages do not disappear if, following Fraenkel [1922a], 
one adds an "axiom of restriction" (cf. Skolem [1922], von Neumann 
[1925]). 

The "antinomies" which arise from the construction of "the set of 
all sets" and similar conceptual formations constitute a fundamental 
obstacle for the foundation of a general set theory which is free of 
contradictions. Without a clarification of these one can hardly 
conceive of a satisfactory foundation for set theory. 

1 In this work we adopt the Standpoint that exact mathematics includes the law of the 
excluded middle. The investigations of L.E.J. Brouwer and H. Weyl, which move in 
another direction, are therefore outside of our scope. 
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I have, therefore, attempted to undertake such a clarification in 
[1925] and should like to add to this a few supplementary remarks. It 
will then become apparent that a universal system of sets can be 
defined that fulfills the requirements. Sets will be introduced purely 
axiomatically as ideal objects between which a certain relation holds, 
rather than explicitly defined. Further, by means of this system, a 
distinction is achieved between "circular" sets, from which paradoxes 
can arise, and "circle-free" sets, which are important for set theory 
proper and for the rest of mathematics. This then also furnishes the 
means with which to investigate the validity of the axioms of 
Zermelo and similar principles. 

The consistency of arithmetic and analysis, and the foundation of 
transfinite ordinal numbers, will be elaborated from these principles 
in the second part of this investigation.2 

The final aim being pursued in this matter is exactly the same as 
that which Hilbert has stated in his work [1922] and [1923] towards 
the new foundation of mathematics: Here, however, the question of 
consistency will be understood in an absolute sense, not a formal 
sense as in Hilbert. In order to found an exact science properly one 
must acknowledge an absolute logic upon which to support it and 
without which no rigour in proofs is conceivable. In particular the 
law of the excluded middle will be included in this logic; for example, 
a real number is either rational or irrational even when a decision 
procedure for this can never be accomplished by human means. Thus 
a Statement can also be true, even if it cannot be proved so in a 
"finite number of logical steps"; and similarly a system can contain a 
contradiction, even though one is certain that a finite method of 
proof would never reveal it (see Finsler [1926a]). Besides, the concept 
of "finite number" must not be taken for granted, especially not in a 
theory which is supposed to provide a basis for it. 

Even though the approach developed here is different from that 
of Hilbert, I believe nonetheless that it does lie quite legitimately 
within the domain of the "axiomatic method". At this stage I should 
not like to omit to express my most cordial thanks to my teacher 
David Hilbert for the rieh Stimulation which I experienced, 
particularly from his lectures directly concerning these matters. 

I am especially obliged to Paul Bernays for critical remarks and 
valuable advice in connection with the development of this work. 

2 
Editor's Note: Controversies surrounding Finsler's axioms altered his plans for the 

second par t of this paper. However, see Finsler [1933], [1941b], [1951], [1954], [1964], 
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Chapter 1. The Antinomies 
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§1. A False Assumption 

The assumption that arbitrarily specified things can always be 
combined together into a set, in other words that there always exists 
a definite set which contains specified objects and only these as its 
elements, underlies the naive set theory which leads to the 
antinomies. By this assumption sets are among the things which can 
occur as elements of sets. 

Let the relation of a set to its elements (i. e. the relation of 
"Containment") be denoted3 by ß. 

The assumption of naive set theory can now be stated: For 
arbitrarily given objects there always exists a uniquely determined 
thing which possesses the relation ß to the given objects and only to 
these. 

This, however, is a postulate which necessarily leads to 
contradictions; for there is no domain of things in which it can be 
satisfied without restriction. 

That is to say, in any domain of things, in which the relation ß is 
given, one need only take those things A of the domain which do not 
possess the relation ß to themselves; that is, those for which A$A 
does not hold. Then there is no object N in the domain possessing the 
relation ß to exactly these things, because both the assumption NfiN 
and its negation lead immediately to a contradiction. 

Applying this postulate to a domain containing one element, we 
obtain a Single thing J, which possesses the relation ß to itself. 

In a domain with more than one element, however, the naive 
postulate cannot be satisfied. That is to say, if a and b are any two 
different things of the domain then there must exist in the domain 
three distinct things A, B, and C such that A possesses the relation ß 
to a only, B only to b, and C to both a and b. Then, however, A ß A, 
B ß B, C ß C cannot all hold simultaneously, for, from this it would 
have to follow that A = a, B = b, C = a or C = b, whereas it is most 
certainly the case that C is different from A and different from B. 
Hence there would certainly exist things which do not possess the 
relation ß to themselves, but then once again the domain could not 
contain a thing N that possesses the relation ß to exactly these 
things. 

3 The relation ß is converse to the relation e of Zermelo [1908], i.e., Mß x, just as x e M, 
means that x is an element of the set M. 
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§2. Circular Definitions 

It follows from these considerations that the naive assumption 
cannot be valid. 

In spite of this, the fact that one is accustomed to comprehending 
a totality of many things as a unity stands in favor of the 
assumption. A collection is often thought of as something given in 
itself. 

This assumption is possible only as long as circle-free Operations 
alone are employed, as in those cases in which the things to be 
collected together are not themselves collections or dependent on 
collections. 

The case of circular collections is different, however. The set of 
all sets, for example, must be a collection which contains itself. 
Under certain circumstances such circular constructions can be 
uniquely satisfiable but there may also exist other conditions uncler 
which the construction becomes indeterminate, and in these the 
circle is not satisfiable. All of these possibilities must be taken into 
consider ation. 

The Situation here is similar to that in algebra where an 
equation of the form x = f(x) possesses a unique Solution under 
certain circumstances, while under others the number x remains 
indeterminate, and finally it may even be that the equation is not 
satisfied by any value of x at all and is therefore insoluble. If for 
example, the equation 

x- a + bx 

is taken, then each of these cases occurs, according to the a and b 
that are chosen: a = 1, b = -1; or a = 0, b = 1; or a = 1, b = 1. For a = 
1,6 = 0 the definition becomes circle-free. 

Since the naive definition of the concept of a set is of a circular in 
nature, all the above cases can occur also in connection with it. The 
assumption that any things whatever can invariably be collected 
together is no longer tenable. If one were to collect together exactly 
those collections which do not contain themselves, then one would 
require something impossible; this is so precisely because the circle 
involved is not satisfiable. 

From this it also follows that a set is not necessarily given 
whenever only its elements are given. Rather, the set must first be 
formed, and it can only be formed with complete assurance if one 
knows that no circle arises. 

It has often been called to special attention that a set which 
contains a Single element, or, as one says, which "consists of one 
element", must not be confused with the element itself. Still less is it 
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permissible to confuse a set which contains many elements with the 
totality of all these elements. "Many things" are not one thing and 
cannot be identified with a Single thing. Generally, however, one can 
associate with them a Single thing. One can always do this as long as 
unsatisfiable circles do not arise. 

Just as in ordinary life it is always the circle-free cases which 
occur, so here too a composite thing will usually not be distinguished 
from the totality of all its separate elements even though this is not 
the same thing. A forest conceived as a unity is not identical with the 
trees from which it is "composed": We can indeed go into the forest, 
but only between the trees! 

The distinction is of importance for set theory, because on one 
hand the number of elements enters in, and on the other hand, it can 
happen that the elements do indeed exist individually while the 
corresponding set cannot be formed because of a non-satisfiable 
circle. 

§3. Sets and Classes 

It is good to bring this distinction into our vocabulary. It would 
surely be inconvenient if one always had to speak of many things in 
the plural; it is much more convenient to use the singular and speak 
of them as a class. This usage will of course be adhered to in what 
follows and will not lead into difficulties, provided that one pays 
attention to the fact that "class" does not have the same meaning as 
"set". A class of things is understood as being the things themselves, 
while the set which contains them as its elements is a Single thing, in 
general distinct from the things comprising it. 

For example, if the proposition which states that any number 
possesses a unique decomposition into prime factors is valid for the 
class of all natural numbers, then it is valid for every single natural 
number. If, however, the set of all natural numbers is an element of 
a set M, then it could be that M possesses only this Single element; 
the individual numbers would not be elements of M. 

Thus a set is a genuine, individual entity. By contrast, a class is 
singular only by virtue of linguistic usage; in actuality, it almost 
always signifies a plurality. In particular, the word "class" can also 
be used in the special case that the number of things collected is 
equal to one or even zero. "Totality", as occurring in the foregoing 
discussion, has been employed with similar meaning to that of the 
word "class" adopted now. 

With this the origin of the set theoretic antinomies can now be 
explained by saying that to every class of things there does not 
necessarily correspond a set. Thus one can truly speak without 
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inconsistency of all sets which do not contain themselves as 
elements, and also even of the class of all such sets; but there does 
not exist a corresponding set. 

One could argue that in speaking of a "class" of things, or even by 
saying "all" things endowed with a certain property, then it is 
already the collection itself which is meant and that such a collection 
should be called a set. But to speak of all sets which do not contain 
themselves, is really contradictory. The contradiction originates 
from the fact that this mode of expression rests on an impossible 
concept. 

This latter Standpoint, however, is unnecessary. The Situation 
becomes much more clear when the concept of a set is modified, so 
that even a well-defined collection of things does not necessarily form 
a set. On the contrary, sets are things which correspond to 
collections, in so far as this is consistent. It is in general better not to 
refer to all collections as "things". 

Adopting these Conventions, one can speak of a class of sets 
without having to connect the formation of a set with it; otherwise 
one needs to be certain that there is no unsatisfiable circle. 

Various concepts which are defined for sets also are meaningful 
for classes. For example one can assert of the class of all sets which 
do not contain themselves that it is uncountable. One can ask 
whether it is well-ordered. Counting and ordering only require the 
"many things", the elements of a class "in their entirety", and not the 
one thing, the set, which in this example certainly does not exist. 

§4. Pure Sets 

As soon as one has convinced oneself that a collection of 
arbitrarily specified things need not always correspond to a set (this 
is the case whenever the formation involves a non-satisfiable circle), 
then the well known paradoxes disappear. 

There now arises the question as to whether a complete 
foundation for set theory can be obtained on these grounds. 

The concept of a collection of arbitrary things is vague as long as a 
"thing" has not been precisely defined. In order to achieve a sharp 
definition one can proceed so as to exclude everything which is not 
absolutely necessary, i. e., everything except the sets themselves. 
One thus obtains "pure sets", whose elements are themselves always 
again only pure sets.4 

4 In 1920 I communicated to P. Bernays the idea of adopting the sys tem of these pure 
sets as a basis for the investigation. The axioms of Fraenkel ([1923] and [1925]) likewise 
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In order to completely avoid the previous difficulties, which lie in 
the concept of collection itself, and so to obtain firm fundamentals, 
we will determine these sets purely axiomatically. 

In mathematics a point is not "that which has no part" but is an 
ideal element which satisfies certain axioms though it is connected 
by various analogies to what one thinks of intuitively as a point. 

A natural number is, in my opinion, not a mere symbol but is an 
ideal element, which satisfies certain axioms, and to which the 
symbols used in calculation possess a close analogy. 

So too, a set should not be only a collection but an ideal thing 
which satisfies certain axioms, and which stands in close analogy to 
the intuitive collections of naive set theory, and in particular with 
the sets which were called "pure sets" above. 

The existence of the things in this system is based on their 
consistency. The system can then be used as a basis for set theory 
and for the rest of mathematics. 

From this axiomatic point of view sets are things in themselves 
rather than collections; it will soon be apparent that we can collect 
sets together without risking the danger of circular eonstructjons. 
The collections themselves, however, cannot then be referred to as 
sets but only systems of sets. By a class of sets we still mean the sets 
which are collected. The distinction between systems and classes is, 
however, of no great importance once the concept of a set has been 
grasped. 

Since the systems of sets are now no longer fundamental objects 
which could then enter into sets as elements, it is consequently 
pointless to form systems of systems and so on, in an arbitrary 
fashion, and thereby become entangled afresh in new circles. 

Chapter 2 . The Axioms of Set Theory 

§5. The Axiom System 

After these preliminary observations we can say in keeping with 
Hilbert's [1913; 2, 238] axiomatics (as will soon be apparent, the 
three axioms are free assumptions, no distinction is made here 
between "axioms" and "postulates"): 

use only such sets, but they seek to exclude the ant inomies by means of additional 
restrictions, as do those of Zermelo. 
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We consider a system of things, which we call sets, and a 
relation, which we symbolize by ß. The exact and complete 
description is achieved by means of the following axioms: 

I. Axiom of Relation: 
For arbitrary sets M and N it is always uniquely determined 

whether Mpossesses the relation ß to N, or not. 

IL Axiom of Identity: 
Isomorphic sets are identical. 

III. Axiom of Completeness: 
The sets form a system of things which, by strict adherence 

to the axioms I and II, is no longer capable of extension. 
That is, it is not possible to adjoin further things in such a 

way that the axioms I and II are also satisfied. 

The expression "isomorphic" will be defined in §7. Let the system 
which satisfies these axioms be denoted by E; then the word "set" 
only means "a thing of the system E". The sets themselves must be 
purely ideal things, which are determined solely by means of the 
relations which are stipulated between them. 

In the following M, N, A, a, ... , will denote sets; S, T, ..., systems 
of sets; equality between sets or systems (A = B, 2,± = S2, ...) signifies 
identity. 

§6. The First Axiom 

Consider, in the first instance, an arbitrary, but fixed system £ 
for which the first axiom is satisfied. The word "set" shall mean, of 
course, no more than "a thing belonging to the basic system 2 under 
onsideration". 

If a set M possesses the relation ß to another set A or in short 
M ß A holds, then A shall be called an element of M. We shall, in 
general, retain the designations which are customary in set theory 
and therefore say, for M ß A: The set M "contains" the set A. The set 
Mcan at the same time contain still further elements B, C, D, ... but 
it follows from axiom I that the class of all these elements is always 
uniquely determined. 

If M is given, then one can also say conversely, that the sets A, B, 
C, D, ... together "form" the set M, though one must not allow oneself 
to be led astray into false ideas by this expression. Arbitrary sets 
taken together need not always form a set, i. e., it is nor postulated 
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that there always exists a set which has the relation ß to some given 
class. 

For certain purposes it is generally advantageous to avoid 
introducing the intuitive notion of "Containment" into the symbol ß, 
which should represent solely a relationship between things and 
which one can also think of as being represented by an arrow 
(examples are given below). The Situation here is roughly similar to 
that relationship which the number n + 1 bears to the number n. 

Thus there is no difficulty involved even in introducing a set 
which "contains itself as an element", and in particular a set which 
contains only itself. This is simply a thing of the system E which 
possesses the relation ß to itself, and to itself alone. That something 
can possess a relation to itself is nothing unusual: Similarity is a 
relation which a geometrical figure possesses to itself too; identity is 
one which something possesses only to itself. 

A thing of E which possesses the relation ß to nothing at all (not 
just to no other thing of the system) shall be called an empty set. It is 
a set, containing no elements, which therefore corresponds to the 
usual empty set. In the present theory however it possesses, if it 
exists, exactly the same status as any other thing of E. By contrast 
the Situation in the usually formulated set theory is that the empty 
set possesses a singular status, being "a collection which collects 
together nothing at all". 

Anything of E which possesses the relation ß to an empty set 
alone, which thus contains an empty set as its sole element, will be 
termed a unit set. 

Let the relation ß be represented by arrows 
and the sets by circles from which these arrows 
proceed. An empty set would then be represented 
by a circle having no arrow. A unit set is given by 
a node having only one arrow directed toward an 
empty set. The upper circle in Figure 2 
represents a set which contains an empty set and Figure 3 
a unit set. 
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A set which contains only itself is represented by a circle from which 
an arrow proceeds looping back to the circle (Figure 3): the J-set. 

If one uses bracket notation then the empty set and the unit set 
can be represented as: { } and {{ }} respectively, whereas for a set 
which contains itself equations, H = {A, ..., H} or J = {J}, are 
necessary. 

§ 7. Transitive systems 

Let E be a system of sets satisfying axiom I. For example one 
could take an empty set, a unit set, and a J-set. 

Arbitrary things of I can be collected together into a subsystem. 
Any such subsystem is then well-defined whenever, for each set, it is 
uniquely decided whether it belongs to the subsystem or not. 

A system of sets which contains all the elements of its members 
will be called transitive. The system I in which axiom I holds shall 
be taken as transitive. 

Consider an arbitrary set M of the system S. There is at least 
one transitive system that contains all elements of M, namely £ 
itself. Those sets which belong to every system of this kind are said 
to be essential in M. 

The system of sets which are essential in M will be denoted by 
YjM. It is uniquely defined; for if Â  is an arbitrary set then either 
there exists a transitive system which contains all the elements of M 
but not the set N, or there does not exist such a system. In the 
second case, and only in this case, does the set N belong to the 
system 

As a consequence of the definition, every element of M is 
essential in M. Further, let the set A be essential in M and let a be 
an element of A, then a is also essential in M; for there is no 
transitive system which contains the set A but not the set a. From 
this it follows that Y,M is also a transitive system that contains the 
elements of M. We have therefore. 

Proposition 1. The sets which are essential in some set M form, a 
transitive system which contains all the elements of M. The same is 
also true when the set M is added to 1,M. 

Sets which are essential in some set M belong, by clefiniton, to 
every transitive system which contains all the elements of M; and so 
in particular they also belong to every transitive system which 
contains the set M. This gives: 
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Proposition 2. A transitive system contains all those sets which are 
essential in any of its elements M. 

From this we have, as a corollary: 

Proposition 3. If A is essential in B, and B is essential in C, then A 
is essential in C. 

By proposition 1 the system of sets essential in C is a 
transitive system. By hypothesis it contains the set B and so 
consequently, by proposition 2, also the set A; this completes the 
proof. 

The system of sets which are either identical to an element of M, 
or which are essential in an element of M is a transitive system 
which contains all the elements of M and therefore also all sets 
which are essential in M. Thus we have: 

Proposition 4. If A is essential in M, then A is either an element of 
M, or is essential in some element ofM. 

Since conversely, by proposition 3, every set which is essential in 
some element of M is also essential in M itself, the system of sets 
essential in M is identical to the system which consists of the 
elements of M and those sets which are essential in these elements. 

Any one-to-one mapping which maps two transitive systems onto 
one another is called relation preserving, if whenever the relation 
A ß a holds for sets of the one system, then the relation Ä ß a' always 
holds also for the associated sets of the other system and conversely. 

Two sets M and M are isomorphic if the system and E ^ j of 
sets which are essential in {M} and {M} respectively can be mapped 
onto one another by a one-to-one relation preserving mapping in 
such a way that the elements o f M a r e mapped onto those of M . That 
this latter condition is not superfluous is shown by the example 

A = {A, B}, B = {A}, 

where A is not isomorphic to B. 
Every set is isomorphic to itself and two sets which are 

isomorphic to a third are also isomorphic to each other. 



114 Foundations 

§8. The Second Axiom 

From now on suppose that an initial system £ satisfies the 
second axiom, which states that isomorphic sets are identical. In 
other words, for each set in £ there shall not exist any other which is 
isomorphic to it. 

If the sets M and M possess the same elements, then according to 
proposition 4, the systems I,M and are identical. One can 
correspond M and M with each other, so there is an isomorphism 
between £n^ and E ^ j . This means that M and M are isomorphic so 
by axiom II we have: 

Proposition 5. Two sets which possess the same elements are 
identical. 

It is not sufficient, however, to replace the second axiom by this 
Statement. This can be seen by means of the following example (cf. 
also §18). 

The system £ contains a set J, which contains itself as its sole 
element, J = {J}. 

Suppose that K is any other set which likewise contains only 
itself and which consequently satisfies the equation K = {K\. 

Now suppose that J * K. Then the elements of the two sets are 
different, and according to proposition 5, so are the sets themselves 
as well. The system could now contain even more sets of this sort, 
which would likewise possess only themselves as their sole elements 
and which would, with equal justice, have to be considered different. 
Indeed, these sets could now arise in quite unlimited numbers, 
higher than any of the usual cardinal numbers5; this would serve no 
useful purpose whatever. Moreover, since the assumption J = K 
would not contradict the axioms, the question as to whether J is 
identical to K would not be decidable. 

Now by axion II, however, all these sets must be identical, as 
they are isomorphic to one another. There can exist at most one set 
which contains itself as sole element. This set will be denoted as the 
J-set throughout the following. 

From axiom II, or from proposition 5, it follows further that there 
can exist only one empty set and likewise only one unit set. These 
are, however, different from one another and from the J-set, since 
they are not isomorphic, as can easily be seen. 

5 Not, however, higher than the cardinal number of the "set of all things", in so far as 
this non-axiomatic set is admitted. 
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If the sets A, B, C satisfy the relations: A = {B}, B = {Q, C = {A}, 
then they are isomorphic, and hence by axiom II are identical to one 
another, and consequently to the J-set. 

In general, therefore, one can conclude that if the basic system Z 
satisfies the first axiom, then it is unambiguously decidable whether 
it also satisfies the second axiom or not. If it does also satisfy the 
second axiom, then it is once more unambiguous whether arbitrarily 
given sets are isomorphic or not, and consequently whether they are 
identical or not. 

§9. Union and, Intersection of Systems 

Suppose now that arbitrarily many initial transitive systems of 
sets Za are given, each satisfying axioms I and II. A system Z is then 
said to be the union of these systems if it satisfies axioms I ancl II 
and in addition possesses the property that every set in Z is 
isomorphic to at least one of the given sets and conversely each of the 
given sets is isomorphic to some definite set of the system Z. Here 
the expression "isomorphic" is defined just as it was previously and it 
is unterstood that sets isomorphic to a given set are isomorphic to 
each other. 

One can now obtain a union system Z by joining together all the 
things which occur in the systems Za and adding the condition that 
all the sets which are isomorphic to one another (and only such sets) 
are to be considered equal. Accordingly, a set M in Z possesses the 
relation ß to some other set N if and only if this is the case in one of 
the given systems Za. 

The stipulation made here is admissible. There is nothing 
contradicting it through which some of these isomorphic sets might 
not be identical. For a single system Za, it is valid by hypothesis; 
even if some other general principle were taken for isomorphism 
between sets from different systems, then it could be ignored without 
affecting any Za. If, therefore, for example, an empty set occurs in 
several of the given systems, then it is to be considered as being "the" 
empty set, which belongs to all of these systems. 

One finds accordingly that to any collection of systems Za there 
always exists a union Z. It is essential to realize that in forming this 
union £ the existence of things which did not already exist 
previously is not postulated. The system Z could even be identical 
with one of the initial systems. 

There is only one union system, Z; for if Z' were any other such 
system, then every set in Z would have to be isomorphic to some 
definite set of Z' and cönversely, i. e., the systems Z and Z' could be 
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mapped onto one another by a well-definecl, one-to-one relation 
preserving mapping. 

Just as a system I, for which the axioms I and II are satisfied 
admits a union, so also it admits intersections. Unions and 
intersections of transitive systems are transitive. By propositions 1 
and 2 the intersection of all transitive systems which contain a given 
set M, consists of the set M together with all sets essential in M. 

§10. The Third Axiom 

Axiom III is the counterpart of Hilbert's axiom of completeness 
[1913; 22, 240]. For our purpose it says that there is a largest 
possible system E, in which axioms I and II are both satisfied. 

A consequence of this axiom is: 

Proposition 6. For any well-defined class of sets, there exists a set 
which contains each member of the class, if and only if the 
assumption that such a set exists does not contradict axiom I. 

The "if' direction alone requires proof. If this assumption does 
not contradict axiom I, then there must exist a transitive system 
which satisfies the first axiom and which contains a set M possessing 
the relation ß to just the given sets. The sets essential in M would 
then form a subsystem *ZM of E. Adjoin M to obtaining E'. This 
system, E', is also a transitive system satisfying axioms I and II, so 
the set M, or one isomorphic to it, must already be in E. Otherwise E 
could be extended by joining E' to it. 

The third axiom can, however, not be replaced by proposition 6; 
for since the word "set" refers only to things of the system E, it would 
not be necessary for the J set to belong to E. The system E would 
then not be well-defined. 

The following Statement, however, is equivalent to axiom III: 

Proposition 7. An arbitrarily defined set M exists (i. e., there exists 
in E a set M satisfying such a definition) if the assumption that such 
a set M exists does not contradict the first two axioms. 

Using axiom III there exists a system which satisfies the first two 
axioms, and which contains the set M. The union of this system with 
E would constitute an extension of E, if E did not already contain the 
set M. Conversely, axiom III is a consequence of proposition 7; for if 
it were possible to extend the system E in accordance with 
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proposition 7, then every new set so obtained would certainly belong 
to I. 

From axiom III it follows, in particular, that the system £ is non-
empty; for the empty set, the unit set, and the J-set must certainly 
all belong to £. Further sets can easily be constructed. The 
assumption of the existence of a "set of all sets" does not contradict 
the first two axioms, as from these alone it cannot follow that a set 
needs to be excluded from being an element of such a set of all sets. 
So by proposition 7 the system £ must also contain one such set (cf. 
§ 1 2 ) . 

It must now, however, still be shown that the system £, which 
satisfies all these conditions, really does exist; in other words, that 
the axiom system itself is consistent. 

§11. The Consistency, Completeness, and Independence of the 
Axioms 

The axiom system set up in §5 is consistent, i. e., from the given 
axioms no contradiction can be deduced logically. In order to see this, 
let us construct a system of things in which the three axioms are 
satisfied. 

Start with arbitrarily given systems £ a in which the axioms I and 
II are satisfied. That such systems do exist is shown by the example 
of a system consisting of the empty and unit sets, i. e. a system which 
consists of two different things, of which one possesses the relation ß 
only to the other, whereas the other possesses the relation ß to 
nothing at all. 

In §9 it was shown how arbitrary systems £ a can be united to 
form a Single system £, in which the axioms I and II are also 
satisfied. We now form, in this fashion, a system £ which is the 
union of all possible systems £ a in which the axioms I and II hold. 
To speak of all these systems entails no circle, as it is only a system 
of sets, and not a system of systems with which one is dealing. The 
union can be obtained in exactly the same way as was given in §9. 

The system £ so formed now satisfies also the third axiom, since 
every system £' which satisfies axioms I and II must occur among the 
systems £a . Therefore £' cannot contain any set which is not 
isomorphic to some set of the system £, that is, £' cannot be a proper 
extension of £. 

Further, it follows from these considerations that the system £ is 
uniquely determined by means of the three axioms, i. e., every 
system £' which satisfies all three axioms can be mapped onto £ by a 
one-to-one relation preserving mapping. Were this not the case then 
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either E or E' would contain a set which was not isomorphic to any 
set of the other system; the union of E with £', constructed as in §9, 
would then constitute an extension of at least one of these systems 
and therefore axiom III would not be satisfied by this system. 

The consistency and completeness of the axiom system are 
secured by these means. Every unambiguous question relative to the 
system possesses an unambiguous answer, irrespective of whether 
this is obtainable by human means or not. Should two essentially 
different answers exist then these would constitute two contradictory 
statements and thereby reveal an inconsistency of the system E, 
which is not possible. 

The independence of the axioms results from the following 
examples: 

The first axiom is not satisfied by a system consisting of two 
things each of which arbitrarily possesses the relation ß either to the 
other or to nothing at all. 

A system which consists of two non-identical things each of 
which possesses the relation ß to nothing at all, satisfies the first but 
not the second axiom. 

A system consisting of the empty and unit sets satisfies both 
axioms I and II but not axiom III. 

The axioms are, therefore, independent in the sense that none 
can be deduced from the preceeding; the second axiom has, however, 
no well-defined meaning without the first, and likewise neither has 
the third without both of the first two. 

§12. Objections 

With the antinomies in mind a few objections which could be 
advanced against the system E will now be discussed. 

According to Cantor a set always possesses a smaller cardinal 
number than the set of all its subsets. This, however, cannot hold for 
the set of all sets, since it has to contain all its subsets as elements. 
Yet we have come to the conclusion that such a set of all sets does 
exist in the system 2. 

Indeed it is here that the proof of Cantor breaks down; for he 
supposes that an arbitrary class of sets always forms a set, and such 
an hypothesis is not satisfied in E. On the contrary, one can 
conclude just the reverse. By applying the Cantor diagonal 
argument to a correspondence between the set of all sets and the set 
of all its subsets, with which it is identical, the diagonal class one 
obtains is never iself a set. The simplest diagonal class is formed 
from the sets which do not contain themselves. The assumption that 
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there exists a set which contains these and only these things as 
elements contradicts axiom I. According to this axiom it would 
either have to possess the relation ß to itself or not, neither of which 
is possible. 

In contrast to this it is unambiguously decided that the sets of all 
sets possesses the relation ß to itself and to every other set. For 
every other set too it must be definite whether it possesses the ß 
relation to any one of the sets, otherwise it is not allowed to occur in 
£. The class of all sets on the other hand is uniquely defined, so the 
existence of the set of all sets can be taken from proposition 6. In the 
system £ this set does possess the greatest cardinal number. 

One can, however, sharpen the objection to the system £ in the 
following way: 

Suppose that the system £ satisfies axioms I, II and III. Now 
consider the class of things of £ which do not possess the relation ß to 
themselves. We have already observed that there does not exist in £ 
any set which possesses the relation ß to all and only these things. 
Now take a new thing N that does not belong to £ and stipulate that 
it is to possess the relation b to the aggregate just considered. If this 
thing N is now added to the things of £, then one obtains a new 
system £' which represents an extension of the system £, in 
contradiction to axiom III. 

In this objection there is an error, however (see Finsler [1925]). 
The definition of N which is given is not correct; it contains an 
inherent contradiction. Namely, if Â  is something "new", i. e., 
something which does not belong to the system £, them it is not 
permissible for it to belong to any system satisfying both of the 
axioms I and II. The condition contradicts itself; there cannot exist 
any such thing N satisfying it, and so, for that reason, an extension 
of the system £ is also not possible. 

Now and then the question is raised as to why certain axioms 
should be admitted in set theory, while the axiom that arbitrary 
things form a set should be rejected. That this axiom necessarily 
leads to contradictions was shown already in §1. In our system, it 
would assume the following form: 

I*. For every fixed class of sets there always exists a set, which 
possesses the relation ß to the elements of this class. 

Now the essential difference between this and the axioms set up 
in §5 is that in I* an existence is postulated - the existence of certain 
things, which are to satisfy the given condition - without considering 
whether this condition can be satisfied. But there arise cases, in 
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which I* leads into a non-satisfiable circle and then it requires 
something impossible. 

The axioms I, II, and III, however, do not require the existence of 
things which do not already exist consistently. Only if things exist 
having certain properties can they be admitted to the system E. As a 
consequence E exists and is consistent. 

The objections which Skolem [1922] has raised against the 
axiomatic foundation of set theory cannot be directed against the 
present system. In particular it has to be understood that in this 
system all concepts must be taken in an absolute sense. If it can be 
shown that the system E is uncountable (cf. §18) then this property is 
absolute and it cannot be realized in any countable domain by 
making special stipulations. Admittedly an absolute logic has to be 
acknowledged and with that the existence of things which cannot be 
individually defined in a finite way must also be permitted. 
Mathematical objects and their properties must be independent of 
any limitations which might be imposed upon them by the possible 
modes of representation. 

Chapter 3 . The Formation of Sets 

§13. Circle-free and Circular Sets 

Since one cannot consider every class of sets as providing a new 
set, one needs other rules which allow the construction of particular 
sets, principles by means of which other sets can be derived from 
given ones. In particular the axioms of Zermelo [1908] yield such 
rules; the validity of these still have to be examined. 

In order to secure a general principle, from which such rules can 
be derived, we shall divide the sets and systems of sets into those 
that are circle-free and those that are circular. Arbitrarily collected 
sets can then fail to form a new set only if the definition of the new 
set contains a non-satisfiable circle: No other obstacle is conceivable. 
It will be shown that there is always a circle-free set corresponding 
to each circle-free system. What has to be understood by these 
concepts must now be investigated more exactly. 

For this purpose we exclude as being circular all those sets 
whose transitive closure contains a set that is essential in itself. 
Certainly all sets which contain themselves, such as the J-set and 
the set of all sets, are thus excluded. The remaining sets form a 
transitive system Z*. We restrict the word "set" as it occurs in the 
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following to refer to things of this system. In particular, a set which 
is essential in another will always be different from it. 

It cannot be maintained that all the E* sets are circle-free. In 
particular a system of sets will also have to be considered as being 
circular if it does not form a set, as is the case with the system Z* 
itself. Such circular systems can now, as can be shown by examples 
(cf. concluding remark, §18), also occur as subsystems of elememts of 
£* sets. These sets, just as much as all those which are essential in 
them, must then be regarded as circular. 

Yet, since one cannot say in general which I * sets can be united 
into a new set, without first having already grasped the concept 
"circle-free", and as the "set of all circle-free sets" cannot be 
represented as a circle-free formation — one comes to recognize that 
the concept "circle-free" can be obtained in no other way than by one 
which is circular. One is lead by such deliberations to the following 
definition which fulfills the requirements: 

A set M of £* is said to be circle-free if M together with every set 
essential in M is independent of the concept "circle-free". 

According to this a £* set is said to be "independent of the concept 
circle-free" if it can be defined so that the definition always yields the 
same set, irrespective of which sets are designated as being circle-
free. 

Every S* set which is not circle-free is said to be circular. 

§14. Justification of the Definition 

With this definition of the concept "circle-free", the question as to 
which sets are circle-free depends on the manner in which a set can 
be defined.6 It must be observed that no requirement is made that 
the definition of a set must be representable by finitely many words. 
The concept of finite number has not yet been introduced. It is quite 
possible for a set to be defined by means of some operation which can 
be applied more than countably infinitely often. Further, the things 
under consideration are conceptual and not dependent on language 
or semantics. The definition must, however, be such that, in every 
Single case, it determines the set unambiguously; otherwise the first 
axiom would not possess a well determined meaning. 

6 In connection with this "concept" it is not a ma t t e r of something extra-mathematical , 
but only of a correlating of the designations "circle-free" and "circular" respectively, to 
the various sets; tha t is, expressed differently, it is a question of a "function" of these 
sets. 
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Since the definition of the concept "circle-free" refers to this 
concept itself, it is natural to consider whether every set really is 
unambiguously either circle-free or circular. One can see that this 
really is the case. 

First one sees that the empty set, the "set with no elements", is a 
circle-free set. By comparison, the "set of all circle-free sets", if it 
exists, is necessarily circular (cf. proposition 11). Thus some sets are 
circle-free: There may also be circular sets in E* It remains a 
possibility that there are E* sets about which no decision can be 
made. 

Now, let M be an arbitrarily given E* set. Two possiblities arise: 
First, there exists a definition for M, and for every set essential in M, 
such that it always yields M even if the class of circle-free sets is 
modified. This modification could be quite arbitrary, simply 
classifying some sets as circular and the others as circle-free. The 
second possibility is that for at least one of the sets essential in M (or 
M itself), there is no such definition. 

In the first case the set M will be classified definitively as circle-
free in accordance with the definition. In the second case the set 
must definitively be classified as circular. There is no ambiguity in 
the definition here either. In examining whether a set is to be 
classified as circle-free or not, the Classification of circle-free sets 
should be allowed free Variation without regard for the final result. 
The result is therefore also unambiguous, irrespective of whether the 
decision turns out one way or the other. From this follows: 

Proposit ion 8. Every E* set is either circle-free or circular, but not 
both. 

With this the definition of the concept "circle-free" is logically 
justified. One can, moreover, also convince oneself that the 
expression "circle-free" really is valid, i. e., no real circle can arise in 
a set which is circle-free according to the definition. Using 
proposition 3 the following holds for E* sets: 

Proposit ion 9. If M is a circle-free set of E* then every set 
essential in M (so in particular every element of M) is circle-free and 
distinct from M. 

One can therefore think of the elements of a circle-free set, M, as 
being already formed in a circle-free way, prior to the formation of 
the set M itself. The circle which is contained in the concept "circle-
free" has no influence, since the circle-free sets are by definition 
independent of this concept. 



On the Foundations of Set Theory, Part I 

§15. The Formation of Sets 
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We might expect that an arbitrary class of circle-free sets can 
always be united into a set. To be sure such a set need not be circle-
free in every instance. The following, however, does hold: 

Proposition 10. Every well-defined class of circle-free sets forms a 
set. This can be either circle-free or circular, but it is distinct from 
every set which is essential in it. 

What has to be understood by a "well-defined class" appears to be 
quite clear; however, it is precisely this point which has created 
difficulties for Zermelo's axiom of Separation (see Zermelo [1908, 
263], Fraenkel [1922a, 23lf.], [1922b], Skolem [1922, 219]). For 
example, one may designate the class of all sets which do not contain 
themselves as well-defined, even though it does not form a set. In 
contrast, the class of all those elements of the unit set which are 
identical to the set which contains the elements of this class, is 
obviously not a well-defined class, even though only the one circle-
free element of the unit set appears in the definition. One comes to 
recognize that the definition must be as follows: 

A well-defined class is understood to be one which is defined 
completely, unambiguously, and without inner contradictions. 

Thus, in place of Zermelo's concept "definite", we shall have to put 
the concept of well-defined or consistent. A well-defined class of sets 
is the same as saying that a class satisfies axiom I (§7). The 
expression "well-defined" class in proposition 6 also has the same 
significance. In most cases a class of sets should be understood as 
meaning a well-defined class. 

Returning to the proof of proposition 10, let us consider an 
arbitrary well-defined class of circle-free sets. It is to be shown that 
there exists a set M which contains the given sets and only these as 
its elements. 

Let be the system of sets which are essential in M. This 
system cannot contain the required set M since otherwise M would 
be essential in itself and therefore some element of M would be 
essential in itself too. One thus takes M as a thing not in hM which 
possesses the relation ß to only the given sets. It has to be shown 
that the assumption that M is a set of I* is consistent. 

To begin, consider the hypothesis that M is circle-free. If this 
hypothesis is correct, then indeed M is a set of £*. But if this 
hypothesis produces a contradiction, then the assumption that M is 
circular is consistent. As an example, consider the system I,M 
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containing all the sets possessing some specific property and require 
M to possess this property too. In this case M would be essential in 
itself and therefore not circle-free after all. 

Now it is to be shown that the assumption that M is circular is 
consistent. Even though M is now supposed to be circular it cannot 
be isomorphic to any set of since it would then be essential in 
itself. The sets of the system are all, by proposition 9, circle-free 
(one could also require this explicitly in the Statement of the present 
proposition). From this definition it cannot be that M, a circular set, 
belongs to ; hence M is a new thing. Moreover, the assumption 
that M is a circular set is in accord with the concept "circular". For, 
if the definition of M were always to yield the same set regardless of 
which sets were taken to be circle-free, then it could not, as we 
supposed, lead to a contradiction if subsequently M itself were to be 
classified as circle-free. 

Therefore, since either the supposition that M is a circle-free set, 
or the supposition that M is a circular set stands in accord with all 
the stipulations made, from this proposition 10 is proved. 

Because of proposition 8, the class of all circle-free sets is well-
defined and therefore, by proposition 10, it forms a set. This set 
cannot be circle-free, otherwise it would contain itself, hence: 

Proposition 11. The set of all circle-free sets exists and is circular. 

From this the existence of circular sets in the system E* is 
assured. It might at first appear to be surprising that there are sets 
which can be defined by nothing more than reference to the concept 
circle-free, and which therefore cannot be given independently of it 
by "specifying" its elements. The class of "all" sets, however, is also 
not given by merely "specifying" elements without using the concept 
"all". Otherwise the addition of new sets would result in a 
contradiction. 

A system of sets is said to be circle-free if it contains only circle-
free sets and is itself "independent of the concept circle-free" (cf. 
proposition 12). The elements of a circle-free set always form a 
circle-free system and conversely, by proposition 10, the sets of a 
circle-free system form a set which, along with the sets essential in 
it, must be independent of the concept circle-free and which must, 
therefore, actually be circle-free. Consequently, circle-free sets 
correspond to circle-free systems and only to systems that are circle-
free. In particular, the following is true: 

Proposition 12. A well-defined class of circle-free sets forms a 
circle-free set if and only if it is independent of the concept circle-free, 
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i. e., if and only if it can be so defined that the definition always 
yields the same class regardless of which sets are classified as being 
circle-free. 

Next, let an arbitrary circle-free system T be given. Adjoin to 
this system all of the sets essential in a set of the system. One then 
obtains a transitive system Er, which is still circle-free. 

In order to show that the sub-systems of £ r are also circle-free, 
consider only the sets of this system, omitting all other sets. 
Whenever £ r is given, all the subsystems of Z r are determined as 
well; so each of these subsystems must be definable within I r , i. e., 
without reference to sets outside of Er. Using such a definition one 
avoids reference to the concept "circle-free". After all, the sets of £ r 
are all circle-free, and £ r is itself independent of this concept. The 
condition "circle-free" is always satisfied here, so it can be omitted 
from any definition of a subsystem which might contain it. Any 
condition to the effect that a set must be circular would never be 
satisfied. In this way the definition of the subsystem is rendered 
independent of the concept "circle-free" and hence is circle-free. In 
addition, each subsystem of T is a circle-free subsystem of 2 r , hence 
we have: 

Proposition 13. Every subsystem of a, circle-free system is circle-free. 

Using proposition 12 simple examples of circle-free sets can 
easily be constructed, such as the empty set and the unit set. That 
there do exist circle-free sets which cannot be formed simply through 
application of proposition 12 is shown by the following example. 

We use the abbreviations: { } = 0, {0} = 1, {1} = 2, etc., and in 
general, {n} = n + 1. In this connection we will take for granted the 
existence of this infinite sequence of circle-free sets. The actual proof 
will be reserved for the second part [page 161 of this volume]. Here 
we shall consider the concepts of finite and countably infinite as 
having already been established. 
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Figure 4 

Now add to these sets countably 
many things: M0, Mx, M2, ..., and 
specify that, for each n, Mn shall 
possess the relation ß to the things n 
and Mn+l so that Mn = {n, Mn+l} (see 
Figure 4). The system consisting of the 
things: 0, 1, 2, M0, Mp M2, ..., then 
satisfies axioms I and II; it is a 
complete system and none of its sets 
are essential in themselves. Further, 
since these sets are entirely 
independent of the concept, "circle-free" 
it follows, in particular, that M0 is a 
circle-free set.7 

Circle-free sets in which the empty 
set is not essential can be formed in a 
similar way. An example is shovvn in 
Figure 5, where each set Mn has n 
elements. 

Figure 5 

This is an "ensemble extraordinaire" 
note: Sets having mfmitely descending 
called "ensembles extraordinaires" by 
example of such a set. 

according to Mirimanoff [1917, 42}. — Editor's 
chains under the Containment relation were 
Mirimanoff [1917] who first discovered an 
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With the help of propositions 12 and 13, we can now establish 
basic existence theorems which are equivalent to certain of Zermelo's 
axioms. 

As has already been remarked the following holds: 

Proposition 14. There exists a unique set, the "empty set", which 
possesses no elements. This set is circle-free. 

In addition, one finds that: 

Proposition 15. For any circle-free set A there always exists a circle-
free set {A} which contains A as its sole element. For any two circle-
free sets A and B there always exists a circle-free set {A, B} which 
contains the sets A and B, and only these, as its elements. 

Since, by hypothesis, the sets A and B are circle-free, they are 
also independent of the concept "circle-free". From this it follows 
directly from proposition 12 that {A} and {A, B} are circle-free sets. 

A set T is, as usual, said to be a subset of the set M if every 
element of T is also an element of M. 

If the set M is circle-free then its elements form a circle-free 
system and by proposition 13 the same is also true of each of these 
elements. Proposition 12 then yields: 

Proposition 16. Each well-defined class of elements of a circle-free 
set M forms a circle-free subset ofM. 

We consider next the system of all subsets of M. The class of 
elements of M remains independent of the concept "circle-free". 
Because a subset Tof Mcan contain only these elements, proposition 
16 applies. This shows that T must be a circle-free set and that also, 
consequently, the fact that T is a subset of M cannot depend upon 
the concept "circle-free". The class of subsets thus remains 
independent of this concept and we have: 

Proposition 17. To every circle-free set M there corresponds a circle-
free set P(M) (the "power set" of M) which contains all the subsets of 
M and only these as its elements. 

If M is circle-free then the set P(M) is always different from M; 
for, M is an element of P(M), but not an element of M. For circular 
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sets, however, the power set can be identical to the original set, as is 
shown by the example of the set of all sets in the total system S. 

Those sets which occur as elements of a circle-free set M are 
essential in M and are therefore circle-free by proposition 9. By 
means of an argument analoguous to that for the proof of proposition 
17 (or alternatively by application of proposition 13 to the circle-free 
system E^) we find: 

Proposition 18. To every circle-free set M there corresponds a circle-
free set UM (the "union set" of M) which contains all elements of the 
elements ofM and only these. 

§17. The Axiom of Choice 

Zermelo's axiom of choice holds for circle-free sets in the following 
form: 

Proposition 19. Let M be a circle-free set whose elements are 
pairwise disjoint and different from the empty set. Then, there exists 
at least one set which has exactly one element in common with each 
element ofM and contains no other elements. Every such set is circle-
free and is a subset of UM. 

Since, by hypothesis, every element of M contains at least one 
element, it can also be assumed without contradiction that in each 
element A of M some fixed element o of A will be distinguished and 
correlated with the element A 8 That the element a is distinguishable 
from the other elements of A follows directly from axiom II; 
otherwise they would be isomorphic. The uniqueness of each set 
gives any choice set a distinct character. That much is true whether 
or not the sets of M are mutually disjoint. By "choosing" elements 
independently of each other we are certain that no unsatisfiable 
circle can arise. 

The choice class consists of elements of UM. By proposition 18, 
UM is a circle-free set, so by proposition 16 the choice class is a 
circle-free set too. A set found as above will possess the required 
properties. Any other set which has exactly one element in common 
with each element o f M and no elements other than these is a subset 
of UM and so, by proposition 16, is circle-free as well. 

Using proposition 19, the axiom of choice is not an independent 
axiom nor an arbitrary stipulation but a provable proposition, i. e., it 

8 The correspondence is necessary only for proposition 20. 
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is logically deducible from the axioms. In faet, the negation of this 
Statement would contradict axiom III. Since the system £* and, by 
proposition 8, the system of all circle-free sets as well, are both 
unambiguously determined, one can see immediately that the 
proposition can only be either true or false. 

The proof given for proposition 19 is independent of the 
distinetion between finite and infinite sets, which has not been given 
here. There does, however, still remain the question as to whether 
the proposition can be proved in an essentially different way, or 
whether one might show that this is not possible. 

The axiom of choice has assumed a position of special interest so 
it may well be appropriate to add a few remarks concerning its place 
within the axiom system of Zermelo. 

If one assigns a restricted meaning to the concept "definite" in 
Zermelo's axiom of Separation then, as Fraenkel [1922b] has shown, 
the axiom of choice is independent of the remaining axioms, because 
there exist sets whose existence depends upon the axiom of choice. 

Attention must be paid to the fact that the sets obtained using 
the axiom of choice must be subsets of the set UM. They are not 
singled out by a definite property however. It follows that the 
concept of "all" subsets of a set is not uniquely determined by the 
axiom of Separation. An "axiom of restriction" (Fraenkel [1922a]) 
does not help either bring about a unique determination, since, 
under circumstances in which several possible sets are given by the 
axiom of choice, an axiom of restriction would admit only a Single, 
arbitrarily selected one of them.9 

If the concept "definite" in the axiom of Separation is understood 
so broadly that it yields all consistent subsets of a set, then the 
axiom of choice would not really serve the purpose of determining 
new sets but would at most tend to exclude certain collections from 
being sets. 

Thus, in the case that there is an "axiom of restriction" that 
admits only those things allowed by the axiom, then the axiom of 
choice is either superfluous or untrue, i. e., it is either a consequence 
of the other axioms or it contradicts them. 

In a certain sense these remarks furnish an explanation for the 
distrust which has arisen around the axiom of choice (cf. also §18). 

That it is necessary for the elements of M to be disjoint in 
proposition 19 is shown by the example of the set: {{a}, {&}, {a, 6}} in 
which a and b denote the empty set and unit set respectively. As 
Zermelo [1908, 274] has shown a general principle of choice that is 

9 
Editor's Note: Fraenkel 's "axiom of restriction" limits the universe of sets to those 

explicitly guaranteed by the other axioms. 
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still valid, even when this condition is not satisfied, can be found. It 
is: 

Proposition 20. Let M be a given circle-free set which does not 
contain the empty set as an element. Then there exists at least one 
circle-free set P which associates with each element A of M an 
element a of A. 

As in the proof of proposition 19 one can assume without 
contradiction that to each element A of M there corresponds a 
definite element a of A. Now, using proposition 15, combine each 
element A of M with the corresponding set a to form a set {A, a}. The 
sets which arise in this way are all subsets of the set U {M, UM) and 
are consequently elements of the circle-free set P(\J{M, UM}). So, by 
proposition 16, they form a circle-free subset of this latter set. 

The set R - { ..., {A, a}, ...} obtained in this way unambiguously 
associates an element a of A with each subset A of M as required; for 
in the system £*, A ß a is never satisfied at the same time as a ß A, 
therefore no ambiguity can arise. 

§18. Further Remarks 

Propositions 5 and 14 to 19 correspond to Zermelo's [1908] 
axioms I to VI and are valid for arbitrary circle-free sets. 

Proposition 5, which corresponds to the axiom of extensionality, 
is valid also for circular sets, but it is not always sufficient for 
securing the identity of sets in general, as has already been said in 
§8. That the axiom of extensionality is inadequate even for circle-
free sets can be shown using the example at the end of § 15. If in this 
example the sets M0, Mx, M2, ... are replaced by M 0 \ M2', ..., 
which satisfy the equations M^ = {n, M'n+l} then it cannot be proved 
that M0 = M0' by using proposition 5 alone in place of axiom II (§5). 

The consistent existence of the sequence of natural numbers can 
be derived without essential difficulty from what has already been 
established (cf. Dedekind [1918]), but it is not self-evident, since the 
usual definition of the natural numbers, and that of the transfinite 
ordinal numbers, is of a circular nature. Both will therefore be 
treated in the second part of this investigation.2 

With the existence of a circle-free set which corresponds to the 
natural numbers, the seventh axiom of Zermelo (axiom of infinity) 
will then have been proved also. Thus, since all the axioms of 
Zermelo are satisfied in the domain of circle-free sets, the consistency 
of this axiom system follows immediately. Therefore, all results 
provable from these axioms, hold for circle-free sets. By using 
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proposition 12, however, it is still possible to form, in a simple way, 
sets which cannot be obtained from Zermelo's axioms alone (cf. 
Fraenkel [1922a, 230ff.]; Skolem [1922, 225]). 

In particular, because of proposition 16, the theorem of Cantor 
stating that the set of all subsets of a set has a greater cardinal 
number than the set itself, holds for circle-free sets. From this it 
follows also that the set of all circle-free sets has a greater cardinal 
number than every other circle-free set. By proposition 16, this set 
must contain the subsets of its elements. Whether, in general, each 
circular set whose elements are circle-free possesses a greater 
cardinal number than each circle-free set is a matter that still 
requires investigation. 

The set of all circle-free sets is an infinite set in the sense of 
Dedekind [1918], since it contains the empty set and, by proposition 
15, for every set A it must also contain the set {Ä}; it is thus 
equivalent to a proper subset of itself. 

Since by proposition 10, each class of circle-free sets forms a set, 
the set of all sets in the total system Z, which indeed contains all 
these sets, must have a greater cardinal number than the set of all 
circle-free sets. Thus the existence of large cardinal numbers is 
demonstrated in an absolute sense. 

For circular sets, in particular for the set of all sets in the total 
system Z, the axioms of Zermelo are no longer all satisfied; for 
example, the sets which do not contain themselves are all elements of 
the set of all sets, but do not form a subset of it. 

It can be shown that the union set axiom and the axiom of choice 
also are not satisfied in the system Z; but as complete proofs using 
circular sets are difficult the following will show that this contention 
is at least plausible. 

Let iV be a set that contains all sets that do not contain 
themselves, but excluding N itself and nothing more. In the 
formation of this set there is no obvious contradiction and it is 
therefore plausible to suppose that it does exist. Now form the set 
{N, {Â }} in which again no contradiction is recognizable. One cannot, 
however, form the union set for these two sets; for, it would have to 
contain all sets which do not contain themselves and these alone. 

Consider further the set which contains all and only those sets 
that contain as their sole element a Single set which does not contain 
itself. The axiom of choice is not satisfied for this apparently 
consistent set. The choice itself is possible in an unambiguous way, 
since each set from which the choice is to be made contains exactly 
one element; but the chosen elements cannot be united into a set. 
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If one defines the product of a set as the set of all sets determined 
by the axiom of choice, then, in this case, the product is empty 
without one of the factors being empty. 

The same example shows moreover that one need not always 
obtain a set by replacing elements of a set with other elements. 
Namely, if in the set just considered, each element is replaced by the 
one set which is contained in it then one gets, once again, a class of 
sets which does not form a set. 

In the second part [page 161 of this volume] similar examples will 
be constructed for the system Z* 

Additional Remark 

For the avoidance of apparent objections it should still be 
remarked that: If, in some system of things, a relation is defined in 
terms of another relation which is assumed to be already given in the 
same system, then the former is said to be a derived relation, in 
contrast to the latter which is the original, or primitive relation and 
which is given first. The relation ß is always to be taken to be a 
primitive relation. 
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The Existence of the Number Numbers and the Continuum 

§1. Preliminary Remarks 

The absolute consistency of the sequence of natural numbers and 
of the continuum will be proven here. 

The proof is based on earlier work (Finsler [1926b]) in which a 
consistent axiom system for set theory was established and from 
which some propositions were derived. This work was dismissed by 
some (Baer [1928a]). But valid objections concerning essential points 
are unknown to me; in fact I claim them to be impossible. The 
following short remarks may suffice to make my Standpoint clear. 

1. Someone who cannot resolve the paradoxes and antinomies of 
set theory and logic (or who holds them to be insoluble) is not in a 
Position to criticize such a theory. An unresolved antinomy could be 
used to prove or refute anything. 

2. Someone who can resolve the antinomies in the right way 
knows that pure logic represents a sure ground upon which to build. 
To consider a formal system as being "more exact" than pure logic is 
an error: Formal statements alone do not suffice for removing the 
antinomies (cf. Frege [1893], [1903, Nachwort]). This can only be 
done by thoughts which are based on pure logic standing above 
formal representations. 

3. To accept finite but unlimited induction as being given would 
be a petitio principii: But to admit only the finite would unduly limit 
mathematics. Mathematics is something more than a handicraft or a 
game like chess. The possibility of transfinite contradictions must be 
excluded too. 

§2. A Proof is Necessary 

The natural numbers are readily thought of as something given 
directly. If one does this only provisionally, then it is certainly 
justified. If, however, one proceeds with the utmost care, then one 
will not admit anything that is unproven. It may be said that small 
numbers are given to us directly, when we can survey them in 
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complete detail. But for large numbers it becomes more doubtful. 
The natural numbers as a whole certainly are not given to us 
directly. 

Evidence for this is to be found in the fact that there were, and 
perhaps still are, many mathematicians who completely reject the 
existence of the natural numbers as an entire system with infinitely 
many elements. The reasons for this rejection have to be 
investigated; one would not want to simply reject something without 
proof. Furthermore, before attempting to prove the consistency of 
the natural numbers, one would need to be clear about what is to be 
proven and where the difficulties lie. 

The expressions "natural number" or "sequence of numbers" 
mean nothing by themselves; one has to say what is meant by them. 
An exact definition is required before one can prove something. The 
properties that we derive must follow from the definition. In the 
case of the natural numbers there are two definitions to be 
considered: the generative definition and the axiomatic one. 

(a) The generative definition starts from a given, initial number 
1 (whether one begins with 0 or 1 is irrelevant). Next, introduce an 
Operation +1 which yields, for each number already found, a neW 
number different from all the others previously obtained. In this 
way one obtains 1+1, 1+1+1, 1+1+1+1, etc. which can then be called 
2, 3, 4, etc. 

Is it now possible to speak of the totality of all numbers? If we 
accept that there exists a given, well-defined system of things from 
which the individual members of the sequence are taken, then we 
could define the natural numbers as the totality of things in the 
system obtained by proceeding from the number (the thing) 1 with 
arbitrarily many applications of the operation +1. 

If, however, one cannot assume that such a system of things is 
given, then this conclusion is not permissible. The sequence of 
natural numbers would only be in the process of "becoming". Each 
number would then be newly created only on the basis of the earlier 
ones. We would not see, to begin with, whether or not this process 
would finally come to an end or not. 

One might think: Of course this process does not end. This 
thought overlooks an important point: There has been nothing to 
justify the assumption that a successor can really be found for every 
natural number. 

The existence of an immediate successor to every number 
appears to be required in the definition. But a definition alone cannot 
secure the existence of something. Is one to be allowed to postulate 
the existence of something which could even carry a contradiction 
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hidden within it and therefore not exist at all? That is exactly hovv 
the antinomies arise. We cannot create something logically 
inconsistent, and therefore non-existent, by an arbitrary act. 

Why do we believe that every number has a successor? Is it 
beeause for every known number, there is a larger one? The 
numbers that can actually be given to us form only an infinitesimal 
portion of the natural numbers; so this fact cannot serve for a proof. 

One might say that there are no reasons to be advanced against 
the existence of an immediate successor to each natural number, 
therefore there could be no contradiction from this assumption. 

But there are such reasons, one can reply. The definition that 
generates the natural numbers is circular; and circular definitions 
are not always satisfiable. 

The circle becomes apparent vvhen the definition is given a more 
exact form. The generative definition is essentially a rule for 
construction which can be given in the following form. 

Construction A: Begin with the number 1 and place a new 
number after each number which results from construction A. 

In the first attempt to define the separate natural numbers one 
had to put a special symbol, +1, after each number obtained by this 
very rule. 

This rule, or construction, therefore explicitly refers to itself. 
Hence it is circular. The hazards of this circle can be recognized in a 
different but analogous rule of construction. 

Construction B: Begin with the number 1 and place a new 
number after each sequence of numbers which results from 
construction B. 

The construction B is certainly not satisfiable in every instance.1 

An attempt to do so would reproduce the antinomy of Burali-Forti. 
Therefore, it is not self-evident that construction A is satisfiable 
either. The Statement that every number has a successor requires 
proof. 

(b) In the axiomatic definition the natural numbers form a 
system of things which satisfy certain axioms. These axioms can be 
given the following form, due to Peano. 

Thereby it is of course assumed tha t one can also conceive of each sequence of 
numbers (e. g. the sequence of all na tura l numbers) as being a whole. This will be 
shown for the natura l numbers in paragraph 3 and is in general possible on the basis of 
the system of all sets, which is deflned in Finsler [1926b], 
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(I) 1 is a number. 
(II) If n is a number then so is n + 1. 
(III) If m and ri are numbers such that m + 1 = n + 1, 

then m = n. 
(IV) For every number n, n + 1 * n. 
(V) A proposition that holds for the number 1 and that holds 

for n + 1 whenever it holds for n, holds for every number. 

An axiom system of this kincl has the advantage that it speeifies, 
separately and completely, each of the requirements which are 
placed on the concept of the natural numbers and which are 
necessary in the definition. This provides a foundation upon which 
arithmetic can be built. The question of the security of this 
foundation remains: Does the axiom system have contradictions or 
not? 

To settle the matter one could attempt to show that it is 
impossible to arrive at a contradiction "in finitely many steps". Such 
a proof would be important, but it would not be decisive. 

That is to say, if one assumes that there is a natural number 
having no successor, then there would also be a limit to the length of 
a proof. An inconsistency might not be revealed in those proofs that 
lie within the permitted limits. Once again, there would be no 
guarantee that every natural number has a successor, even though 
the negation of this Statement stands in overt contradiction to the 
axiom system. This inconsistency would not be formalizable and 
hence not susceptible to analysis by formal methods. 

However, if one can find a system of things whose existence is 
consistent and which satisfies the axioms, then the axiom system is 
shown to be consistent in an absolute sense. We have already seen 
that the generative definition does not provide such a system. But a 
system of this kind can be obtained from set theory. 

Just as the consistency of geometry can be proven from 
arithmetic, the consistency of arithmetic can be proved from that of 
set theory. For set theory one must use a different method; one has 
to base the argument on purely logical grounds as was shown in 
Finsler [1926b], 

The consistent existence of the continuum will follow from that of 
the natural numbers, provided that the Operations of set theory allow 
one to form arbitrary subsets of the natural numbers. 
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§3. The Proof 

By "sets" we mean ideal things which are related to one another 
by means of a fixed relation: "Containment". Collections of sets are 
called "classes". There does not neecl to be a set corresponding to 
each class. The class of all sets determined by the three axioms is 
denoted by £. For some of the propositions as well as for the concept 
"circle-free" one must refer to Finsler [1926b]. 

Consider those classes T which contain the empty set, and 
contain {M} whenever they contain the set M, for each M such that 
{M} is also a set. There is such a class, namely £ itself. Form the 
intersection of these classes; it will contain those sets that are in 
every such F. Let A be this intersection. The empty set is in A, and 
for each M of A, {M\ is a member of A whenever {M} exists. 
Moreover, the induction principle holds for this class, A, as shall be 
shown. 

Let <j) be a Statement which holds for the empty set, and holds for 
the set {M) whenever it holds for an M such that {M] exists. It is to 
be shown that </> holds for every set of A. 

For the proof, consider the class of all sets for which the the 
statement holds. This class contains the empty set and contains {M} 
for each of its members M, provided that {M} is indeecl a set. Thus it 
is one of the classes T, and all the members of A must belong to it. 
Thus the statement <f> holds for each member of A. This provides an 
induction principle for A. 

In Finsler [1926b] it was shown that the empty set is circle-free 
and that, in proposition 15 of that paper, the set {M} is circle free 
whenever M is. Thus, using the principle of induction established 
above, we have that A really does contain {M} whenever it contains 
M. 

If the set {M} is identical with {N} then M is identical to N by the 
Axiom of Identity. None of these sets can be equal to the empty set, 
since all the sets of the form {M) contain an element. 

This shows that Peano's axioms are all satisfied with the empty 
set in place of 1 and {M} in place of n + 1, whenever n is a name for 
the set M. 

In the definition of the class A there was no reference to the 
concept "circle-free" so A is independent of this concept. 
Consequently there is a circle-free set T which contains exactly the 
members of the class A as its elements. This follows directly from 
proposition 12 of Finsler [1926b]. This shows the axiom of infinity 
holds in the circle-free sets, a result which was omitted from the 
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paper just mentioned. Accordingly, all of Zermelo's axioms hold in 
the circle-free sets. It follows that Zermelo's axiom system is 
consistent. 

Using proposition 17 of the same paper there exists a circle-free 
set which contains exactly the subsets of T as its elements. This is 
well known to be equivalent to the existence of the continuum. 

§4. Concluding Remarks 

One could ask whether the existence of the natural numbers and 
of the continuum could be proved without use of the concept "circle-
free". 

This might be possible for the natural numbers. One can show, 
although not in a simple way, that for a set M which is not circle-
free, the set {M) exists; circular definitions might arise however. 

For a proof that the class of all sets contains a set equivalent to 
the continuum, the concept "circle-free" or something equivalent to 
it, probably cannot be avoided in any case. 

If the natural numbers are given one could take the collection of 
all subclasses of the natural numbers as the continuum. This would 
constitute a collection of a higher order. In forming functions there 
would appear collections of even higher order. This would not only 
be inconvenient but could lead to difficulties. In any case, one could 
not obtain a general set theory in this way. 

The advantage of the method employed here is that the first order 
objects, the sets, already emcompass the whole of set theory. The 
second order objects, the classes, and the third order, all classes 
possessing some property, only appear in the foundations of the 
subject. Once the foundations of analysis are established, there is no 
further need to concern oneself with objects of higher type. 



139 
Lecture at the Mathematical Colloquium, University of Zürich, January 1939. First 
published as: "A propos de la discussion sur les fondement des math6matiques" in: F. 
Gonseth (ed.): Les entretiens de Zürich sur les fondements et la methode des sciences 
mathematiques, 6-9 decembre 1938; Zürich: Leemann 1941, 162-180 (MR 2, 339). 

Concerning a Discussion 
On the Foundations of Mathematics 

An International Congress on the foundations and methods of 
mathematics was held here in Zürich a month ago, in December. 
The credit for this belongs to F. Gonseth who inspired and led the 
conference with the assistance of the Institut International de 
Cooperation Intellectuelle. 

The aim of this Congress was not to bring the discussion 
concerning the foundations of mathematics to a definite conclusion in 
just a few days. Rather the intent was to lead this discussion along a 
useful path. Toward the end of the conference several questions 
arose, which in my opinion are very serious and which could not be 
resolved. It seems reasonable to me to take up these questions again 
and pursue the discussion further. There is also this additional 
reason: If one knows that a train is on the wrong track, one has a 
duty to stop the train, if it is possible, in order to prevent disaster. I 
judge that it is the same in mathematics; and this is why I am 
speaking on the topic. 

I shall consider a certain problem in set theory: the nature of the 
axiom of choice. 

Only those things that arose during the Congress which are 
necessary for the understanding of what follows will be repeated 
here. I claimed there that the axiom of choice is not truely an axiom 
at all within a well-defined and complete system of sets, but a 
proposition which could be true or false like any other. I would like 
to make this claim more precise and at the same time limit it 
somewhat. 

To begin, here is the content of the axiom in question. Let M be 
a collection of non-empty pairwise disjoint sets. The members A, B, 
C, ... of M can have any power whatever. There is at least one 
element a in A, B has at least one element b, and so on. Because the 
sets have no elements in common, their elements must be different 
from one another. Zermelo's axiom of choice asserts that for each 
such set M there is a choice set N having exactly one element in 
common with each set in M. This means that N has exactly one 
element a from A, a unique element b from B, and so on. 
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The choice set N is a subset of the set UM which contains all the 
elements of A, B, C, ... . Were A, B, C, ... to contain only one element 
each, a, b, c, ... respectively, then one would have that N is idential 
to UM. In this case it is not necessary to use the axiom of choice to 
construct the choice set N. In certain other cases one can use the 
axiom of Separation to define the choice set as a subset of UM The 
question now arises: Under what circumstances is this impossible? 
That is to say, when is the axiom of choice essential? At the same 
time, we must ask whether the axiom of choice is really satisfied. 

If one proposes some system of axioms for set theory, one can 
envisage three possible cases for the axiom of choice. The first is 
that there is a set M, as above, for which there is no choice set: The 
axiom of choice would then be false or the axiom system would be 
contradictory. In the second case, one could always find a choice set 
N for a collection M using the other axioms: The axiom of choice 
would then be superfluous. The third case still remains: the case in 
which the axiom of choice is genuinely necessary to determine some 
choice set. 

This last case only arises when the axiom of Separation fails to 
provide all subsets of some set: In that case it would obtain all the 
choice sets too, if there are any. It is possible however that the 
axiom of Separation is conceived in so narrow a way that it only 
provides those subsets that are constructed in this or that manner. 
The remaining subsets, for which one requires the axiom of choice, 
cannot be constructed in the same sense; there is no rule for 
construction included in the axiom of choice. If one admits into 
mathematics only those things that are explicitly constructible, one 
would reject the axiom of choice on principle, a priori. 

Suppose, on the other hand, that we do not regard sets as being 
given only by specific constructions. In this case the axiom of choice 
is generally necessary unless there is a unique choice set. A choice 
set that is unique could be obtained easily. If there were no choice set 
then the axiom would be false. So the axiom would give at least one 
of the available choice sets. Thus it is possible, or at least compatible 
with the present axiom systems, to take only one of the choice sets. 
So far there is no indication, however, of which choice set is 
preferred. The sets provided by the axiom of choice are unspecified. 
The axiom is vague because it does not precisely specify which sets it 
actually provides. In a categorical system this could not happen. 

This does not mean, however, that there is no categorical axiom 
system, one whose universe of sets could not be affected by dropping 
the axiom of choice (such modifications seem to be possible only in 
artificial systems). 

The axiom of choice taken as a proposition can only be true or 
false, as with any proposition, in a categorical system not including 
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this axiom. In particular this is the case for an absolute set theory 
that admits all sets except those that would produce a contradiction. 

One might mention another interpretation of the axiom of choice 
in which choice sets are not absolutely determined. It asserts that 
among the choice sets that are assumed to exist, one of them 
(determined or freely chosen) is provided. In this case, not only is the 
name "axiom" a bad choice but the very formulation itself would 
require modification. In any case, this could not have the same status 
as the other axioms of set theory. 

•k 

Now the question arises as to whether the axiom of choice is true 
or false in absolute set theory. A communication from K. Gödel was 
read at the Congress saying that Mr. Gödel succeeded in 
demonstrating that the axiom of choice is free of contradiction. I 
would like to offer a contrasting communication according to which 
the axiom of choice is false. This is the case not merely for specially 
constructed systems: But it is false in a very important and general 
case. 

These two results, that of Gödel and the one I announce, are not 
really contradictory. It is quite possible to prove consistency (that is, 
the absence of formal contradiction) for propositions that are 
evidently false. I cannot accept that it is permissible to make an off 
hand Classification of a false proposition as being free of 
contradiction. Nor do I see why years of labor should be devoted to 
proving the consistency of propositions and theories even if, having 
achieved success, it can still turn out that they are evidently false. 

This evidence is not to be denied: It is too simple. I will give it by 
an example which I have long ago introduced (Finsler [1926a]); it is 
still of value today. 

Suppose we are given a formal system, any thing which is neither 
inconsistent nor too restricted will do. Certain statements are 
provable in this system. In any comprehensible formal system there 
are only two alternatives for any given formula: It has a proof in the 
system or it does not. 

Now consider an arbitrary infinite sequence formed, for instance, 
using the digits 0 and 1; the sequence 001100110011-- can serve as 
an example. One could ask whether or not the digit 1 appears 
infinitely many times. For some sequences one can formally prove 
which of these possibilities holds: The sequences 1111 and 
101101110 - are of this kind. Each of these proofs contains only 
finitely many symbols; hence they can be enumerated. To each proof 
there corresponds a unique binary sequence, the one treated in the 
proof. The binary sequences themselves can be enumerated by the 
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enumeration of proofs, though a sequence could perhaps appear more 
than once. 

Now we construct a new sequence, a, using Cantor's diagonal 
method in which the nth digit differs from the nth digit of the nth 

sequence in our enumeration. That is, one replaces 0 in that position 
with 1, and vice versa. Finally, consider the proposition: In a the 
number 0 does not appear an infinite number of times. 

If the formal system does not permit a proof contradicting this 
proposition, then the proposition is formally consistent. So a would 
be one of the enumerated sequences: But this is impossible. The 
proposition a is, however, clearly false. To see this consider the 
sequence 1111-, for which we can find more and more complicated, 
though still finite, proofs showing that this sequence does not contain 
0 infinitely many times. For example, 0 does not appear after the 
first place, nor after the second place, nor after the third, nor after 
the rth place. For each such proof the sequence a will contain a 0. 
Hence 0 occurs infinitely often in a. 

This argument shows that the proposition given above is 
formally consistent yet evidently false. Such a flagrant contradiction 
cannot be simply branded "non-existent". 

Further, it follows that a consistency proof for some theory does 
not guarantee that the theory is free of contradiction. I believe that 
this is an important objection to formal proof theory. It was only 
when this objection was made arithmetical and hence more limited 
in scope (known as Gödel's theorem) that proof theory took it 
seriously and was transformed significantly. There is a question of 
principle here; does one objectively consider criticisms directly where 
they arise or does one act when forced by outside events? The 
essential content of my objection has not yet been taken seriously 
into account. 

Without knowing the extent to which Gödel's proof has been 
realized, I cannot actually claim that something false has been 
shown consistent.1 In analysis the axiom of choice is true, not false 
at all. This result is not new. Several years ago I showecl the 
validity of the axiom of choice in analysis (Finsler [1926b], [1933]). 
Formal consistency of a proposition follows from its general validity. 
It also follows that the continuum can be well-ordered, but this does 
not provide an effective well-ordering. There always exists a 
difference between those things provable without the axiom of choice 
and those things which require it. 

1 I have recently seen Gödel's note [1938], Gödel only establishes the conditional 
proposition: if von Neumann set theory is consistent without the axiom of choice, it is 
consistent also with this axiom. My objection is one of principle and is not altered by 
this. 
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On the other hand, Gödel's proof concerns set theory; it is just in 
this domain, however, where the axiom of choice as originally 
formulated by Zermelo is false. I shall give an example soon. First, 
it is necessary to discuss another question that arose during the 
Congress, that of the status of arguments that are not formalized. 

Think of the research that has been undertaken to show that 
analysis is consistent. I asked myself what had been accomplished 
by these years of extremely complicated and laborious research. P. 
Bernays himself acknowledges that there has been little progress 
towards a real understanding of the actual consistency of analysis; 
the formal research does not guarantee that actual contradictions are 
not present. Yet one can obtain the absolute consistency of analysis 
by a few lines of argument that are plainly correct and not very 
difficult. I ask again: Which is better? 

On the other hand, absolute consistency insures formal 
consistency (and not conversely). As a consequence, all the long and 
painful research undertaken to show formal consistency is 
superfluous in the end: The result has long ago been obtained. This 
last objection still holds. The result was obtained many years ago 
but nobody paid any attention to it. 

It is the same in set theory. The axiom of choice is true in 
certain partial domains of set theory and hence is consistent. But it 
is false in the entire universe of that theory. To be fully secure, it is 
surely necessary first of all to settle on the nature and objects of set 
theory itself. I would like to put forth how this can be done without 
unduly restricting the concepts of set and cardinality. 

Some limitations on sets are necessary; if a set is to be well-
defined, then it cannot be left unstated what its elements are to be. 
Objects from outside of mathematics are not permitted as elements. 
Even mathematical objects are not to be taken as properly defined 
unless they have a basis in set theory. One leaves aside all but the 
pure sets themselves; sets only have other sets as members. 

In order to define the sets exactly, it is best to fix them 
axiomatically. Sets are just "things" between which there is a 
relation satisfying the axioms. One could take for this relation the 
membership relation e, where a e M when a is contained in M as an 
element. For a reason which will soon be clear, I use the converse 
relation "Containment": M ß a, that is, M contains a as an element. 

The totality of sets is now given by the following three axioms 
(Finsler [1926b]). 

The first asserts that it is always uniquely determined for any 
two sets M and N whether or not M ß N. In other words, for any set 
M, it is always determined which sets hold the relation ß to it. This 
means that the elements of a set are determined. The elements of a 
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set are always determined; but this does not mean that simply 
determining elements insures that there is a set that contains them. 
This is precisely the reason for choosing the relation ß in preference 
to e. 

The second axiom says that isomorphic sets are identical. Sets 
which cannot be distinguished from other sets will not be admitted. 

The third axiom is that of completeness. One requires that all 
sets are to be admitted that satisfy the other axioms. 

An objection has been raised against this axiom of completeness 
in Baer [1928a] that it is unsatisfiable, and does not prevent the 
whole system of sets satisfying the first axioms from being expanded. 

This objection is mistaken: It does show however that one must 
be clear about the antinomies to be able to judge these things. With 
an unresolved antinomy one could, of course, refute or prove 
anything, but this is not the way of scientific progress. Resolving the 
antinomies is therefore absolutely necessary (Finsler [1925], 
[1927b]). 

Even today one hears the opinion that the antinomies arise from 
considering infinite totalities as complete wholes and that this should 
not be permitted, or that the formation of uncountable cardinalities 
should not be permitted. But why should this be forbidden? We are 
not given an objective reason; and besides, the antinomies arise from 
a different direction. It is perfectly permissible that one should 
operate with any actual infinite number and construct powers 
however large. Mathematics permits everything that is free of 
contradiction. This is the only mistake that one can commit; if one 
avoids it the antinomies disappear. Set theory remains intact with 
its powers, higher and still higher. 

That these powers exist is a fact, but a fact, it is true, which is 
not to be admitted without some consideration. One first must make 
sure that no contradiction lies hidden within their definitions, and 
this is not easy. But this difficulty does not start with the 
uncountable; it is already present with the sequence of natural 
numbers. For the sequence of natural numbers to be extended 
arbitrarily it is necessary to suppose the existence of infinitely many 
things and thus to pass beyond direct experience. The usual 
definition of the natural numbers contains a vicious circle and only a 
profound investigation shows that there is no contradiction, that is, 
that the sequence of natural numbers exists (Finsler [1926b] and 
[1933]). 

What about the system of all sets just defined? Can one enlarge 
it? The system containing the natural numbers, the continuum, and 
the subsets of the continuum can always be enlarged. But if we have 
all sets, it is different. If I say that I have taken all, and then I take 
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one more, I have contradicted myself. That is not permitted. If I say 
only that I am taking all sets, there is no contradiction. I must not 
then say that I am going to take still more. The system of all sets 
cannot be enlarged. 

It is necessary to take up another objection to this theory which 
is also based on a misunderstanding. 

I have spoken of "systems" of sets, the system of sets, certain 
systems of subsets, and so on. What is a system? A system is a 
collection of sets. The sets are "things" satisfying the axioms. One 
can collect things into a system. 

Now, in the course of the discussion during the Congress, 
someone remarked that one ought not use a vague, intuitive, naive, 
notion of a set along with an exact axiomatic conception. The idea of 
a system is an intuitive conception of a set to be sure, but it is free of 
vagueness and imprecision. On the contrary, if sets are well-defined, 
so are systems of sets. On the basis of concepts introduced using the 
axiomatic method, one can follow with other precise concepts. For 
example, if the natural numbers are given by the axiomatic method, 
one can, on that basis, introduce the rationals which are not less 
precisely defined though they are not given axiomatically 
themselves. It is the same with these systems of sets, 

One ought, it is true, assure oneself that there is no new clash 
with the paradoxes of set theory. But that is not the case. These 
difficulties only arise when one considers sets of any sets whatever, 
not with sets of other objects such as point sets. Sets of objects can 
be formed straight away. Difficulties could arise if one were to form 
systems of systems in an unrestricted way, But that is not the case 
here because one only considers systems of sets; no reflexive 
reasoning appears. It is these reflexive arguments which most easily 
allow contradictions to slip in; so one must be especially attentive 
with them. But if the sets have already been defined, then 
reflexivity does not enter into the formation of systems of sets. There 
is for example no set within the system of all sets containing those 
sets that are not elements of themselves, But these sets do form a 
well-defined system. Hence there are systems that do not correspond 
to sets. Instead of antinomies we have theorems, precise and 
reliable. 

It is necessary to add a remark concerning a matter of principle: 
I do not hold that it is the object of the foundations of mathematics, 
as it is sometimes presented, to reduce arguments that are more or 
less doubtful to ones that are merely less doubtful. Or, as one also 
hears, to replace arguments which are more or less sure by ones that 
are more sure. It is really not a question of arguments being "more 
sure" or "less sure", but whether they are true or false. It does not 
help the Situation to mix good arguments together with doubtful ones 
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and consider wrong arguments, even actual errors, as being beyond 
doubt - as has actually happened. 

I shall now construct an example for which the axiom of choice is 
false. 

Consider the sequence of finite and transfinite ordinal numbers. 
One can define them, following Zermelo, as sets. The first is the 
empty set and the others are identical with the set of their 
predecessors. That is, 

0 = {}, 1 = {0}, 2 = {0, 1}, 3 = (0, 1, 2}, ..., co = {0, 1 , 2, 3, ...}, ... . 

One needs to require that no ordinal contains itself but only 
contains its predecessors, those strictly smaller. 

The set of all these ordinal numbers does not exist. Otherwise 
the Burali-Forti antinomy would follow. Now consider the sets that 
contain a single ordinal number, 8. That is: 

{0}, {1}, {2},..,,{co}, ....... , 

Except for the first one, these sets Mg are not ordinal numbers 
because they contain only one element, whereas ordinals contain all 
their predecessors. Let M be the collection of all these sets A/§. 

The definition of this collection, M, does not involve any 
contradiction. To show that M is a set it suffices to show that the 
relation ß is uniquely determined; and this is the case. The class M 
does not contain itself. Nor is it contained in any one of its elements, 
since it is not an ordinal number; ordinal numbers contain only 
ordinals as elements while M contains other things too. Therefore by 
a general proposition (Finsler [1926b], Theorem 6) M must exist. 

The axiom of choice fails for this set. A choice set would have to 
contain exactly the ordinal numbers; and that is impossible. The 
actual choice is possible and even unique; but the axiom requiring 
that the selection forms a set cannot hold. This example does not 
stand against the axiom of choice as such, but only against the axiom 
of choice in so far as it requires the existence of a set. 

It would be interesting to know how far these considerations 
could be applied to other axiom systems for set theory. The research 
of Gödel does not apply to the set theory we have just considered, but 
rather to more restricted systems which have been formalized in one 
way or another. The same example could be introduced into a more 
restricted theory provided one were allowed to form the sets of M and 
all the ordinal numbers. 

The result is the following: If one claims that the axiom of choice 
is compatible with certain other axioms of set theory, in the sense 
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that one can find systems in which all the other axioms are satisfied, 
the proposition is true but it is not new. If one claims, on the other 
hand, that in every consistent set theory one can employ the axiom of 
choice to form new sets, then this claim is false, even if one could 
prove it to be free of formal contradiction (cf. footnote 1). 

Additional Notes 

I shall now respond briefly to several objections presented during 
the same mathematical colloquium, mostly by Paul Bernays. 

"The theory rests on a certain philosophical position." 

In effect, this position consists simply of the following: that one 
knows in principle the difference between true and false. And that 
in the general theory of sets, as in arithmetic, every unambiguous 
question has a unique answer. We could earn a living without such 
a philosophical position but the practice of science would be 
impossible without it. 

"The argument leading to the example of a formally consistent 
proposition which is false must be rejected because it is associated 
with Richard's paradox." 

Is one to be convicted on account of his associations when he is 
otherwise innocent? The accused must be tried on evidence of a 
mistake that he has himself made. Where is the mistake in the 
preceeding argument? For my claim, it is of little significance that 
the proposition in question can be expressed in this or that 
formalism: We can easily imagine a suitable formalism. We could 
even use natural language. We could employ the same method to 
treat Richard's paradox (Finsler [1926a], [1927b], [1927c]). In any 
case one has to make some effort to think about these things and 
then the result becomes evident. 

"What does evident mean?" 

A thing is evident when, after sufficient reflection, one sees that 
it holds, and cannot fail. It is possible for a thing to be evident to one 
person and not to another when he has not attended to it sufficiently. 
It is impossible for two contradictory facts to be evident. A real 
contradiction, not merely an error, would make all science 
impossible. One must decide case by case whether an argument is 
evident or not, without giving an explicit general rule. 
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"Is it sufficient to fix the concept of a set by these three axioms?" 

The term "axiom" used to designate the conditions which 
establish a theory is perhaps misleading sometimes. The word 
"postulate" might be adequate, but it is little used now. Apart from 
this nuance, it is necessary to fix the notion of a set if one wants to 
treat set theory as an exact science. This cannot be done by explicit 
definitions because there are no things already present upon which 
sets can be based or to which they can be reduced. Hence the 
definition must be implicit. This means that certain notions are 
given by their characteristic properties and others are deduced from 
those. 

"Objections against the axiom of completeness have already been 
raised in various ways." 

All these objections are erroneous, just as all the attempts to 
Square the circle must run aground. Certainly it is possible to 
construct systems larger than the system of all sets. For example, 
one could adjoin a new object for each class that does not form a set. 
But the new objects do not have the original relation ß to the other 
sets but another relation |x(ß) depending on ß. Hence they do not 
form sets because in the axioms there is only one fundamental 
relation; it is unique and hence does not depend on any other 
fundamental concept. If one wants, in Opposition to this, to designate 
the new things as sets in the sense of our axioms, in other words to 
regard |a(ß) as a primary relation, then a contradiction results. So 
one has made a mistake which is not permissible. 

"If one thinks of sets as given one by one, why is it impossible to 
adjoin yet another one?" 

This could be done as long as one did not employ the concept 
"all". One cannot speak of all sets and then adjoin another without 
contradiction. 

"Why not take a universal totality which contains everything 
imaginable including the new things in question?" 

This is possible but unnecessary. Of course, this cannot be one of 
the sets given by the axioms. The latter system is so encompassing 
that it contains all of analysis and all formal set theories known until 
now; they represent only an extremely small part of this system. 
Besides it is given simply and uniquely. Surely this is large enough. 
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"You did not mention the division of sets into circle free and 
circular." 

This distinction (Finsler [1926b], Burckhardt [1939]) is of the 
greatest importance for the further development of set theory and, 
above all, for the foundations of arithmetic and analysis. For other 
matters it is not needed. It would leacl to far to discuss it here. In 
any case one has to grasp the other points of the theory first. 

"Various objections have been made earlier by T. Skolem [1926]." 

These objections are based on misunderstandings. From the 
beginning T. Skolem has held that the distinction between sets and 
classes is a mere verbal artifice even though, as it was explained 
above, the two concepts are essentially different. Not all classes are 
necessarily sets. For this reason he understood nothing that 
followed. The existence of sets is absolute not conditional; hence 
they are unique. Skolem remarks: "In paragraph 17" (referring to 
Finsler [1926b]) "the principle of choice" (for circle free sets!) "is 
'proved' by invoking the possibility of introducing something which is 
free of contradiction. Every thing goes along very smoothly." One 
has to respond that the treasure ehest opens more smoothly if one 
has just the right key than by trying to break it open with a pry bar. 

"The argument concerning the set M for which the axiom of 
choice fails has to be taken as a plausibility argument rather than a 
proof." 

It is reasonable to speak of plausibility as long as one thinks the 
result could be different: We talk of proof when the result is 
compelling. In the case of the set M, considered previously, 
plausibility arguments would suggest that it does not exist. Usually 
one reasons as follows: The set of all ordinal numbers is inconsistent; 
the set M is of the same power as this inconsistent set; consequently 
it too should be inconsistent. Here we have a plausibility argument 
that leads to a false conclusion. We can assure ourselves that the set 
M satisfies the axiomatic conditions for set theory and hence its 
existence is secured. 

Furthermore, we can prove in the same manner the following 
remarkable result: Among the ordinals which can be defined in set 
theory there is a largest. Consider the class of all ordinal numbers 
which have a successor. This is a set because were it to exist it 
would not contain itself nor be "essential in itself' (in the present 
instance this is equivalent to saying that it is not contained in any 
ordinal number). The relation ß is well-defined for this set. It 
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contains exactly the ordinals smaller than itself. Consequently it is 
the largest ordinal number. Attempts to construct larger ordinals 
must fail for the same reason that the system of all sets cannot be 
enlarged. One cannot, for example, take out some smaller number 
and place it at the end to make a largest; this would contradict the 
definition of the ordinals and that of the sets. 

"In the usual system of set theory the formation of the set M 
considered above is excluded." 

This would be the case if one were to insist that the union set 
axiom is satisfied. The example of the set M shows that this axiom is 
false in the domain of all sets. There are even sets of only two 
elements which do not have a union in the domain of all sets. Take 
for one of these elements the largest ordinal and as the other the set 
whosc solc Clement is the largest ordinal. The union set would 
contain exactly the ordinal numbers, and that is impossible. 

In any event, the question arising here is whether the axioms of 
set theory have the task of describing the properties of sets or of 
discarding all the sets that do not satisfy certain arbitrary 
requirements. 

In the familiar axiom systems, it seems that the second 
interpretation has been adopted. But it is necessary to remark that 
one thus obtains only a partial set theory which does not provide a 
satisfactory foundation. When considering the foundations of 
analysis one does not postulate axioms that are only partially 
satisfiable and then ban those parts of analysis that fail to satisfy 
these axioms. It may be useful to establish some limitations for some 
particular purposes, but first of all, it is necessary to determine the 
extent of the entire domain. 

Having formed the complete theory of sets one can separate out a 
partial system which is well defined, general, satisfies the usual 
axioms, and is useful for applications. The system of non-circular 
sets has precisely these properties. 

Finally I would like to respond to a question raised during the 
conference (see Gonseth (ed.) [1941, 156]) by T. Skolem: "What does 
'nori formal thinking' mean?" 

I am entirely in agreement with T. Skolem in thinking that there 
is no essential difference between formalism and natural language; 
the language I am using here could be regarded as a kind of 
formalism. But it is a fact that in mathematics there are things 
which cannot be explained in a completely fixed language. One has 
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to accept the facts. Take for example the countable ordinals which 
are undefinable in a given language. There exist such numbers and 
one of them must be the least. It is well-defined even though it 
cannot be represented in this language. One has no right however to 
exclude it from the countable ordinals. The Situation can be 
illustrated by the following example (Finsler [1925]). 

On the blackboard one writes the numbers 1,2,3 and the 
expression "the smallest natural number which is not written on this 
blackboard." What number is determined by the expression on the 
blackboard? The answer is: None! Because if there were one, it 
would be simultaneously written and not written on the blackboard. 
However, if one only speaks these words without writting them, or if 
one comprehends them in thought, then these words do represent a 
definite number: 4. 

Just the same, the ordinal number considerecl above was not 
representable in language but in thought: It exists just as the 
number 4 does. This manner of thinking does not lead to eternal 
silence, since one can draw conclusions the results of which can be 
expressed in the language. The introduction of imaginary numbers 
into analysis produced such doubts; but one learned to calculate with 
them and after a "voyage through the imaginary" one often arrived 
at important and real results. One learns to operate with things the 
entirety of which can be represented in language, but which cannot 
be represented linguistically one by one. After a "voyage through 
silence" one arrives at important results. A mathematician who is 
shown the path is surely capable of traveling forward on his own. 
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The Infinity of the Number Line 

I am happy to be able to speak to your circle here in Basel, with 
its time honored mathematical tradition, about a time honorecl 
theme, namely the natural numbers. 

The question whether something infinite exists is also a very old 
one. Many have said yes, others no; the disagreement continues to 
this day. 

Attempts to prove that the sequence of numbers is infinite, that 
is, to show that for each number there always exists a still greater 
one, were made during the last Century; I want to mention here: 

Bolzano 1851: Die Paradoxien des Unendlichen (§13). 
Frege 1884: Die Grundlagen der Arithmetik (§78). 
Dedekind 1887: Was sind uns was sollen die Zahlen? (§5). 

The later development of set theory showed, however, that these 
proofs are not sufficient. 

Dedekind gave a rigorous development of arithmetic in the 
natural numbers under the assumption that there are infinitely 
many things. His reasons for this assumption, however, cannot be 
considered sound. Dedekind reasoned roughly as follows: Consider 
the world of conceivable things. The ego belongs to this world and 
corresponding to each thing there is an idea of that thing. One thus 
obtains the idea of the ego, then the idea of the idea of the ego, etc., 
and apparently an infinite series of ideas. But surely, this is only 
apparent. If one really does attempt to construct this series, then 
one sees very soon that these ideas can no longer be distinguished 
from one another, especially if one still does not yet have natural 
numbers with which to enumerate them. Soon these ideas can no 
longer be formed any further; the sequence of these ideas stops. 

This consideration also shows, however, that it is not self-evident 
that the sequence of natural numbers is infinite. There could exist a 
place beyond which one simply cannot advance. If there really does 
not exist anything which is infinite, then the natural numbers are 
not infinite either. 

Now if we want to settle this question as to whether the sequence 
of natural numbers is finite or infinite, then we must first say what 
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the natural numbers are, or what we understand by them, otherwise 
the question has no meaning. 

What are the natural numbers in mathematics? 
They are in any case not the words "one", "two", "three", "four", 

etc.: Nor are they the numerals 1, 2, 3, 4, etc. They are not even 
strokes placed one after the other llll..., although all these things can 
very well be used for counting. When we count, we do use the 
number words "one", "two", "three", "four", etc.; but we cannot 
proceed very far with these, certainly not into the infinite. 

What therefore are numbers, as they occur in mathematics? 
They surely should be independent of the language which we speak, 
and above all they ought to be enduring as well, whereas these 
dashes will certainly pass away very quickly. The numbers which 
Euler investigated are exactly the same as those which we still 
investigate today; they really do endure. 

The names of numbers and the numerals are nothing more than 
names or notations for the numbers, in exactly the same way as the 
word "house" is only a name for a house in which people really live. 

If, however, the numbers are enduring, then it follows that they 
are not of a substantial, material nature; for material things can 
always be assumed to be transient. Numbers are, therefore, ideal 
things. This is the first and most fundamental thing which we really 
do need in pure mathematics: We need ideal things with which we 
can operate, and concerning which we can make various statements. 

In addition to this, however, we still need at least one relation 
between these things; for we cannot do very much with things alone 
and no relation between them. 

A simple relation of this kind is given with the natural numbers, 
namely, the relationship 4 bears to 3. We say: 4 is the successor of 3, 
or, 3 is the predecesor of 4. It is a simple, asymmetrical relation 
between 4 and 3 which can be represented by means of an arrow: 
4 -> 3. I have deliberately made the arrow go from 4 to 3 and not in 
the reverse direction. In the reverse direction we do not yet know 
how far we can proceed; in the direction used here, we arrive 
eventually at 1: 3 2 -» 1. 

This is a primitive relation between these numbers, a 
fundamental relation which does not presuppose that other relations 
are given. We can also denote this relation by a letter, say ß, and 
then write: 4 ß 3, 3 ß 2, 2 ß 1. 

It is useful to put 1 ß 0, and so introduce a zero, which is the 
predecessor of 1 but which is not a natural number itself. Further, 
this zero shall not have any predecessor. Each natural number then 
has exactly one predecessor: Zero has none. 
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After this preparation we can now define zero and the natural 
numbers completely. 

Definition. Zero and the natural numbers are ideal things, which 
are connected to one another by a fundamental relation ß and which 
are determined solely by means of this fundamental relation, such 
that: 

(1) 0 ß x does not hold: Zero does not have a predecessor. 
(2) If n ß 0 or n ß m with N(m), then N(n); provided that there 

are no a and b such that n ß a and a ß b. 

Here N(n) stands for: n is a natural number. Thus (2) states that 
n is a natural number if it has exactly one predecessor which is 
either zero or a natural number. Further, only in this event shall it 
be a natural number, which means, more precisely, we shall still 
have to require that: 

(3) N(n) holds only when necessary. 

This means that n is a natural number only when it follows from 
(1) and (2) that it must be a natural number.1 

If x ß x were to hold for some thing so that x would be its own 
predecessor, then x could be a natural number. For, if one assumes 
that x is not a natural number, then (2) will not affect this 
assumption. Thus by (3), x is not a natural number. From the 
opposite assumption, that N(x) holds, (2) would again give that N(x) 
holds. But this assumption is not necessary and so N(x) does not 
hold. 

In contrast to this, if we assume 1 ß 0, then 1 is necessarily a 
natural number; similarly with 2, where 2 ß 1, etc. The system of 
natural numbers is therefore non-empty, it contains the numbers 1, 
2, 3, 4. It is uniquely determined; for, given any n whatever, either n 
necessarily must be a natural number by (1) and (2), or this is not 
necessarily so, in which case it is not so. 

Finally, the natural numbers are also consistently defined by 
these means, for, nothing impossible is required: If a thing has 
certain properties, only then is it a natural number, and not 
otherwise. 

Editor's Note: (3) is equivalent to the following s ta tement : N(n) if and only if the 
assumption not-N(n) contradicts (1) and (2). 
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Thus, in particular, it is not required that for every number m 
there must exist a successor n with n ß m. Whether there is one or 
not is something which still has to be investigated. 

One can now derive propositions about the natural numbers, 
however, and in particular the Step from n to n + 1 can be taken. 
That is, the principle of complete induction can be established. This 
principle must be so formulated that the existence of n + 1 is not 
presupposed. It can be formulated as follows. 

Complete Induction. Let A(ri) be any proposition about the 
natural numbers. If A(l) holds, and if from the assumption that A(m) 
holds it follows that A(n) holds also, where n is a natural number 
following m, then A(n) holds for all natural numbers n. 

It is definitely not being postulated that to every m there must 
exist such an n. 

The proof goes as follows: Consider the class of all numbers n for 
which A(n) is true. The number 1 belongs to this class. If m belongs 
to it and n is a natural number which follows m, then n belongs to it 
as well; thus all those things n which according to (2) are necessarily 
natural numbers belong to this class also. But according to (3), these 
are all the natural numbers. Therefore, A(n) holds for all natural 
numbers n. 

We return now to the question as to whether the sequence of 
natural numbers is infinite, that is to say as to whether for each of 
these numbers in there is a number n such that n ß m holds. 

It may well appear as though this would be openly self-evident in 
the world of ideal things. There may appear to be no grounds which 
might make one hesitate to accept that for each number m, there is 
another n that follows it. 

In reality, however, there are such grounds, and that this is so 
can be seen by considering the ordinal numbers. 

First, I will present the natural numbers intuitively. This can be 
done as follows: Begin with the number 1; then place a new number 
after each number which we have obtained in this way. We thus 
obtain the numbers 1, 2, 3, 4, 5, ..., and this apparently continues 
indefinitely. 

Returning to the ordinal numbers: It is natural to start with 
zero, then comes 1, and then one places a new number after each 
sequence of numbers which is obtained in this way. 

Initially one obtains the finite ordinal numbers 0, 1, 2, 3, 4, 5, ..., 
which are usually identified with the natural numbers. 

After this sequence of finite ordinal numbers, one places a new 
number co, then co + 1, co + 2, etc., after all these numbers co + co then 
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cö + © + 1, etc. This construction too can apparently be continued 
indefinitely. 

In reality, however, this is not so: One cannot place a new 
ordinal after the sequence of all ordinal numbers, since this would 
certainly constitute a contradiction. If one already has all ordinal 
numbers then there does not exist a new one beyond these. 

It can even be shown that there does exist a largest ordinal (cf. 
Finsler [1941b]), a definite last ordinal number Q. One can no longer 
place more ordinals after Q. There are no more. 

Thus, it is not at all self-evident that after each natural number 
a further one can be placed: With the ordinal numbers this cannot be 
done. The question remains as to whether the natural numbers 
continue or whether there is a largest one. 

In order to settle this, one must first clarify the reason why, in 
the case of the ordinal numbers, one finally reaches a stage beyond 
which one simply cannot continue any further. The reason does not 
simply He in the word "all", which is a clear and logically 
unobjectionable concept. On the contrary, the intrinsic reason lies in 
a non-satisfiable circle: The rule of construction for the ordinal 
numbers is of circular nature. It refers quite explicitly to itself, and 
this circle is ultimately unsatisfiable. The rule says that one is to 
place a new number after each sequence which is obtained by means 
of just this very rule, which is only defined here. 

And how is it with the natural numbers? The rule for 
constructing them is circular in precisely the same way; it is also 
stated that one is to place a new number after each number obtained 
by means of just this very rule which is defined here. It could become 
impossible for natural numbers at some stage too. After all, in our 
earlier definition of the natural numbers N(in) occurs within the 
definition of N(ri). This circle cannot simply be ignored. 

If this circle cannot be eliminated, then it has to be shown 
harmless in our definition of the natural numbers. But this is not so 
simple: We must first clarify when such a circle might be harmful. 
For this purpose it is necessary to investigate a system of things 
which is more general than the natural numbers, a system in which 
circularity causes actual harm. The ordinal numbers could be 
considered. But there is a still more general system: The system of 
pure sets whose elements are again pure sets, is better. 

I will now define more exactly what we want to understand by a 
pure set, or briefly by a set. As has been said, it is a generalization of 
the natural numbers. The difference is essentially this: A natural 
number always has only one predecessor, whereas a set can have 
arbitrarily many predecessors. Even when a, b, c, ..., are all distinct 
the relations M ß a, M ß b, M ß c, ..., can all hold for a set M, where 
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a, b, c, ..., are also sets. One then calls the "predecessors" the 
elements of M and writes M = {a, b, c, ...}. This also serves to define 
the term "set"; in reality, however, sets too are ideal things which are 
given by their relationship to their elements through the ß-relation. 

The exact definition of a set now runs as follows. 

Definition. Sets are ideal things which are connected with one 
another by means of a fundamental relation ß, and which are 
determined solely by means of this fundamental relation. The 
following are to hold. 

(a) Each set determines its elements, i. e. the sets to which it 
possesses the relation ß. 

Thus, if a set is given, then so are its elements. The converse does 
not hold however. If definite sets are given, then there does not necd 
to exist a set which possesses exactly these sets as its elements. One 
cannot simply require its existence. A further condition refers to the 
identity of sets: 

(b) The sets M and N are identical whenever possible. 

This means that whenever the assumption that the sets M and N 
are identical does not contain a contradiction, M = N shall hold. 

Thus for the sets I = {2} and K = {K} it follows that I = K. One 
could say that this is self-evident, because the sets I and K are not 
really distinct. A contradiction would result from treating them as 
distinct. There are, however, cases in which it is not so easy to decide 
which sets are identical; therefore (b) is required. 

There is still one further condition which is necessary, namely: 

(c) M is a set whenever possible. 

Without such a condition sets might not exist. Thus, whenever 
the assumption t h a t M i s a set does not produce a contradiction, then 
M shall be a set. 

It now follows that sets do exist. For example, zero is the empty 
set, a set that does not possess any elements; the natural number 1 is 
the set which contains zero as an element, 2 contains 1 as an 
element, etc. In this way the natural numbers are definite sets. 

The system of all sets is therefore non-empty; it is consistently 
defined and unique. Nothing impossible is required: only if a thing 
has certain properties is it a set. 

There do, however, exist cases in which given elements do not 
form a set. For example, if one considers all sets which do not contain 
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themselves, i. e. all sets for which N ß N fails, then there does not 
exist a set which contains exactly these sets N. It would have to 
contain itself, if it did not contain itself: and it could not contain 
itself, if it did contain itself. The reason why this set does not exist is 
that, once again, a non-satisfiable circle appears in its definition. 

It can happen that a set having a circular definition does indeed 
exist: the set of all sets contains itself and all other sets. No 
contradiction arises; this set exists and is circular. 

There are also sets which are defined in a circle-free manner, the 
empty set 0, the sets 1 and 2, for example. No circle whatever occurs 
in their definitions: they are explicit. 

The problem of how to distinguish these two cases from each 
other now arises. Which sets are circle-free and which sets are 
circular? 

Another difficulty appears here: this distinction, between circle-
free and circular sets, cannot be given in an explicit, circle-free way. 
Were this possible, then the "set of all circle-free sets" could also be 
defined explicitly, and thus in a circle-free way; it would then be a 
circle-free set. As such it would have to contain itself, and a set 
which contains itself certainly cannot be characterized as circle-free. 

This distinction, between circle-free and circular sets, can 
therefore be given only by means of an implicit definition; one cannot 
continue solely with explicit constructions. In order not to be tied to 
the intuitive concept we will write "c-free" in place of "circle-free" and 
make the following definition: 

(I) A set is c-free whenever its elements are c-free and 
it does not itself depend upon the concept "c-free". 

(II) A set is c-free only whenever this is necessary. 

A set is independent of the concept "c-free" if, on the basis of its 
definition, it stays the same regardless of which sets are classified as 
c-free. In the first place, one makes an assumption that certain sets 
shall be c-free and the rest not. As long as it has not yet been 
established which sets are c-free, such an assumption is permissible. 
Whenever a set M is uniquely determined by its definition 
independent of this arbitrary assumption, then that set is 
independant of the concept "c-free". 

The "set of all c-free sets" is dependent upon the concept "c-free"; 
for, it changes whenever one denotes new sets as c-free. If no set is 
called c-free, then it would be the empty set. Should all sets be called 
c-free, then it would be the set of all sets. Furthermore, this set 
cannot be defined in any other way, without making use of the 



The Infinity of the Number Line 159 

concept "c-free"; otherwise it would be c-free and would have to 
contain itself. We will soon show that this cannot be. By contrast, the 
empty set is independent of the concept "c-free". One can define it as 
"the set without elements", without recourse to the concept "c-free". 
This set will always remain the same. 

It may be objected that there are sets which depend upon a 
certain concept and which therefore cannot be defined without 
making use of this concept. In fact, such examples have already been 
considered here: the "set of all sets" is dependent upon the concept 
"all". That is to say, if one could define this set without employing the 
concept "all", then there would be no contradiction if one were to 
form still more sets. But this surely cannot happen. 

I will now show that a c-free set cannot contain itself. This is 
derived from postulate (II) as follows: suppose M contains itself, 
M ß M, Consider the possibility that M is not c-free. Certainly it has 
at least one element which is not c-free. Therefore by (I) it need not 
be c-free. Then by (II) it is not. Therefore: every set which contains 
itself is not c-free. 

The natural numbers are c-free. This follows from the principle 
of induction: 0 and 1 are c-free sets. If n - {m} and m is c-free, then n 
too is c-free; for, n contains only one c-free element and is 
independent of the concept "c-free". Thus all the natural numbers are 
c-free. 

It follows immediately from postulates (2) and (3) be that each 
number is different from all its predecessors. 

Now it is still to be proven that there do exist infinitely many 
numbers: for each number m there does exist a number n = {m}. 
Since the natural numbers are c-free sets, it suffices to show more 
generally that for each c-free set M there exists a set N which 
contains it as its sole element, N = {M}. 

In order to do this I will first consider an apparently more 
complicated case which is, however, in actual fact quite simple. It 
will be shown to prove existence in non-trivial cases. I will show that 
the set of all c-free sets exists. 

Let it be denoted by U. The assumption that U is a c-free set 
leads to a contradiction; for, in this case it would have to contain 
itself and this is not possible. The assumption that U is not c-free 
does not lead to a contradiction. First, U is really a new set distinct 
from all the given sets, since they are all c-free. Second, U is 
dependent upon the concept "c-free"; for, otherwise the subsequent 
Classification of U as c-free could not lead to a contradiction. Hence 
the assumption that U is a non c-free set contains no contradiction. 
Thus it is satisfied, and so U exists. 
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In exaetly the same way it now follows, but with greater 
generality that: 

If the assumption that a class U' of c-free sets forms a c-free set 
leads to a contradiction then U' forms a non c-free set. 

For the proof one can replace U with the set determined by U' in 
the argument above. 

We now apply this proposition to the class which consists of one 
c-free set M: 

If the assumption that this class forms a c-free set were to lead to 
a contradiction, then it would form a non c-free set. It does not, 
however, for the set N - {M} is c-free. After all, it contains only c-free 
sets and is itself independent of the concept "c-free". Hence the 
assumption that N is a c-free set cannot contain a contradiction. 
From this it follows that N exists. This proves that to every natural 
number there exists a successor, and therefore the sequence of 
numbers is infinite. 

To picture the Situation, think of the infinite as locked up. If we 
want to obtain it, then we have to unlock it. In order to do this, we 
need a key, and this key must be turned. This turning is circular in 
nature. If no satisfiable circle is allowed, we cannot obtain the 
infinite: should it be allowed, the infinite is obtained. 
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On the Foundations of Set Theory 

Part II. Defense 
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Preliminary Remarks 

§1. The first part of this construction of the foundations of set 
theory had the subtitle Sets and their Axioms. It appeared in 1926 in 
the Mathematische Zeitschrift [1926b]. The second part was to have 
treated the number systems. Since the first part met with such a 
lack of understanding, it seemed preferable to let these 
investigations, concerning the natural numbers, the continuum and 
the transfinite ordinal numbers, appear as separate publications 
([1933], [1941b], [1954]). 

External circumstances delayed an adequate defence of part I for 
a long time. In fact, I had hoped that the case would finally succeed 
on its own, at least among those who really, earnestly troubled 
themselves about the foundations of mathematics. 

But now, even quite recently, old, erroneous objections have been 
brought forward. I therefore find it necessary to go into these 
objections more fully in order to refute them. In doing this I shall 
concentrate first on the attacks and reserve a treatment of the 
further developments for a later occasion. 

§2. It is clear that it will not simply suffice to say what is right, 
but it is also necessary to expose and refute the many false views and 
errors. It is not always pleasant, for personal reasons, to have to do 
this but it certainly has to be done for the sake of the case. 

In particular, it is necessary that the distinction between true 
and false be made in an objective way. This means that set theory 
investigates what is true, and not only what is hypothetically taken 
to be true (for instance in axioms). 
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A formal "conception of truth" cannot suffice here: It is far too 
narrow and can neither solve the paradoxes, secure the infinite, nor 
govern the higher cardinal numbers. A formalist Standpoint which 
admits only finitely long formulas, has only countably many ways of 
representing sets and therefore cannot exhaust all the possibilities of 
a non-denumerable system. 

Once one overcomes the antinomies, however, there are no 
grounds whatever for rejecting absolute truth in pure mathematics. 

In actual fact we are concerned here with the defence and 
protection of classical mathematics which enjoyed uncontestecl 
validity until the turn of the last Century, that is, until the discovery 
of the set-theoretic antinomies. Thus we are also concerned with 
overcoming the so-called "crisis" in mathematics. 

Chapter 1. Point of Departure and Ultimate Aim 

§3. I thought that I had macle the Standpoint of "On the 
Foundations of Set Theory" sufficiently clear in the introduction to 
part I [1926b]. It is the Standpoint of classical mathematics, which 
has been secured everywhere but in set theory. Since this was 
misunderstood by many, further comments are necessary. 

The numbers in classical mathematics, in particular the natural 
mumbers but also the real and complex numbers, are not objects that 
are arbitrarily created by man (how could man ever create infinitely 
many objects?) but exist quite independently of him. He can only 
investigate them and undertake research. This was also the view of 
Frege [1884, §96]: "The mathematician cannot create something 
arbitrarily, any more than the geographer can: He too can only 
discover what there is and name it." 

§4. An important task, which is often overlooked, is that of 
deciding whether there are infinitely many numbers or not. This is a 
question of an objective nature and cannot be solved by mere 
assumptions. 

The system of natural numbers appears to us at first, as far as 
we can judge it, to be something very simple: After each natural 
number another one follows. But does this aluiays hold for the whole 
number system? 

Some effort is required to see that it might be otherwise, that 
there might be a last natural number which cannot be exceeded. This 
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matter has to be investigated. We can really survey only a tiny part 
of the number system. 

Euclidean geometry first appeared to be something simple, and 
therefore for a long time it was thought to be the only possible 
geometry. It was not easy to see that it might be otherwise, namely 
that lines could only possess finite length. Of course this possibility 
does actually exist. This had to be investigated too. 

If, as many believe, the infinite does not exist, then the number 
system would be finite. It would not have to turn back upon itself (as 
a line in elliptic geometry does); it is quite conceivable that there is a 
last and greatest natural number. 

Someone disputing this overlooks the fact that it really is the 
case with the ordinal numbers. 

Every ordinal number can, in a well known way, be made equal 
to the set of all smaller ordinal numbers. The smallest ordinal 
number is zero, which is identical to the empty set. Then 1 follows as 
the set which contains 0 as its sole element, then the ordinal number 
2 which is the set which contains 0 and 1, and so on. 

Proceeding in this way we obtain the ordinal numbers, each one 
equal to the set of its predecessors. One ordinal number is greater 
than another if and only if it contains the other as an element. No 
ordinal number contains itself. 

One cannot form the set of all ordinal numbers, since its 
definition contains an inherent contradiction. If it were not an 
ordinal number, then it would still contain exactly all preceeding 
ordinal numbers, and therefore it would have to contain itself as an 
element, which is impossible. 

In contrast to this, there does exist a set of all those ordinal 
numbers for which there exists a greater ordinal number. This is the 
largest ordinal number; it is no longer possible to find a successor to 
this one. Because of this it is impossible to deduce from its definition 
that it ought to belong to its own elements. Thus, comparing it to its 
elements, we see that it is a new set and consequently its existence is 
not thrown into question. 

The class of all ordinal numbers is uniquely defined, but no set 
corresponds to it. On the other hand, the union-set of this class does 
exist: It is once again the greatest ordinal number. 

This has nothing whatsoever to do with the infinite, about which 
nothing at all has been said here. The greatest ordinal number could 
be finite, and would then coincide with the greatest natural number. 
In this event the number system would be finite. That this is not the 
case is therefore in no way self-evident. 

Actually the supposition that every natural number must have a 
successor could indeed contain a contradiction, because the definition 
of an arbitrary natural number, like the definition of an arbitrary 
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ordinal number, contains a circle (see [1933], [1954]). With the 
ordinal numbers this circle finally prevents further successors; it 
must be shown that the natural numbers do not behave in the same 
way. 

In the sequence of natural numbers there is a definite first 
number, the number 1. Why should there not also be a definite last 
number? If this is not the case, should we not be able to prove it? 
Must there be only a mystical belief in the infinite? Belief in an 
absolute mathematical truth is well justified, as soon as the 
antinomies have been overcome. But the distinetion between true 
and false in mathematics ought not be a matter of faith: It must be 
investigated. 

That the good God has made the natural numbers will be readily 
conceded. He has, however, left it to us to find out how many there 
are. The good God has also made the atoms in our world but it is 
highly probable that there are only finitely many. 

§5. The question as to whether there do or do not exist infinitely 
many prime numbers is very well known. It is usually aeeepteel that 
there do. This was proved by Euclid. Euclid's proof is valid only if one 
already knows that there are infinitely many natural numbers. But 
is this known? No, most people do not know it. On the contrary, it is 
only assumed. But then, one does not know whether there are 
infinitely many prime numbers. Euclid's proof would be in vain. 

An axiom of infinity is therefore used and it is said that the 
proposition is correct. But if the axiom is not true, then the 
proposition is false. Thus, once again, nothing is known. 

The axiom of infinity states that there exist infinitely many 
things. In the pereeived world it is very probably not fulfilled. So an 
ideal world is needed. Do there exist infinitely many things in this 
ideal world? If this cannot be shown, then the mathematics of the 
infinite breaks down. One would have only hypothetical statements 
and one could not even know whether Euclid is right with his 
assertion. 

Some say that infinitely many things are not needed in 
mathematics; all one needs is that whenever arbitrarily many things 
are given, there will always exist another. But this leads no further: 
It is exactly the same, only expressed differently, 

§6. It is by far the most important task of a real building of the 
foundations of mathematics to clear up this point and show that 
there are infinitely many numbers. This is not easy, but also not 
impossible (see [1933], [1954]). If it is contended that an "absolute 
proof of consistency" for Peano's axiom system for the natural 
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numbers is "not possible" or "not conceivable", then it shoulcl be 
remembered that once upon a time Aying was declared to be 
impossible and that the brothers who, in spite of this, did accomplish 
it were called liars. 

§7. Of course this cannot be done with purely formal methods. A 
system of formulas which "can be written down" is necessarily only 
finite, and thus compatible with the hypothesis that the universe is 
finite. But if the universe is finite, then it cannot be shown that it 
contains infinitely many things or infinitely many "symbols"; in this 
event it would simply be false. There would be no additional things 
that could be found. 

The infinity of the number system can never be calculatecl, but it 
can be seen nevertheless. But, one must try hard enough. 

It is disgraceful and frauclulent to simply assert that there are 
infinitely many numbers without knowing whether this is the case. 
If a child asks: "Is it true that to every number there always exist a 
greater one?" Can one then in good conscience answer: "Yes, that is 
true." 

It is also unworthy to pretend in mathematics that there are 
infinitely many things, especially when one does not oneself believe 
in this. Many deny the infinite and nevertheless want to teach 
differential and integral calculus and operate with convergent series 
and are of the opinion that one can always place another symbol 
after an arbitrarily long sequence of symbols. But they cannot 
guarantee that every sequence can be extended. 

It is untenable to claim that it follows from basic intuition that 
every natural number has a successor. With equal justification one 
could assert the same for the ordinal numbers and that is false, as 
has been shown above. 

If, however, one finally says that it suffices to show by using 
formal methods that a contradiction cannot be derived from the 
axiom of identity, then this is just as degrading as when a criminal 
says that he permits himself to venture anything, just as long as he 
is certain that he will not be caught, or at least not be sentenced 
under the law. Whoever has committed a murder is a murderer, even 
if it cannot be proved against him. 

§8. It is an error to consider a system of formulas as being 
something "more exact" than the numbers and their relationships. 

First of all, a formula consists of "symbols". What is a symbol? 
Perhaps it is a question of the materially visible signs that can serve 
for momentary communication. But if nothing eise exists, what are 
these signs communicating? If symbols are used for the 
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communication of logical concepts or relationships, then the logical 
concepts or relationships form the foundation, not the symbols. A 
mere game with meaningless symbols remains meaningless. 

Moreover, the symbols are inexact and transient. They can never 
serve as foundations for an exact and permanent mathematics. 

What Euclid did in attempting to define the point and the line by 
means of intuitive properties, would today be rejected in a study of 
the foundations of geometry: What matters is only the relationship 
which can arise between point and line and not "what they look like". 

To define numbers by means of symbols is to take a step back; 
here too it is only the relationship between the numbers which 
matters and not their "appearance". 

If one did in some way manage to define the "symbolism" exaetly, 
even then the formulas constructed from them could not be a 
Substitute for thinking. Formulas can be useful for many purposes, 
but a thinking formula is no more real than a thinking machine. The 
formulas only represent certain externally given relationships 
between things; the essential, intrinsic interconnections are often 
neglected, and for this reason serious mistakes can arise (see [1944], 
and §13 below). For instance a formally consistent system can be 
entirely wrong in content (see [1926a]). 

Numbers, as ideal things, are not visible in the same way as 
symbols which have been written down, or objects of daily life; but 
they are no less clearly recognizable for one who seriously concerns 
himself with them. This does not mean that every Single number 
taken on its own shall always be sharply identifiable; but one can 
indeed recognize that the numbers form exaetly defined systems 
which are invariant and permanent. No one has ever seen the exact 
number n; in spite of this it is exaetly, clearly, and uniquely defined. 
The same holds also for pure sets which are generalizations of the 
natural numbers. 

§9. Pure mathematics, which we have to investigate, is 
independent of our human shortcomings. Whether a mathematical 
proposition is true or false has nothing whatsoever to do with 
whether we can decide this or not. The law of the excluded middle is 
the basic requirement for mathematics. That there exists such a 
mathematics, and indeed one which is supremely rieh in content, is 
shown by experience and by logical thinking. To demonstrate this in 
detail is our task when we study the foundations of mathematics. 

Mathematics ought not to be unnecessarily or arbitrarily 
restricted by admitting only those things that are constructible in a 
certain way, for example. The domain of the real numbers goes 
beyond this and we cannot permit the prohibition of some real 
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numbers. Everything which satisfies the law of the excluded middle, 
that is everything unambiguous and consistent, is to be included in 
pure mathematics. 

§10. In his Grundlagen der Geometrie Hilbert [1913] showed 
that Euclidean geometry is consistent, provided that the arithmetic 
of the real numbers is consistent. In Grundlagen der Mathematik it 
must be shown that the whole of mathematics is consistent without 
further preconditions. In particular, the classical arithmetic of the 
real numbers, on which geometry is based, is also consistent. It is 
impossible to show this by formal means alone. Therefore it is really 
better not to regard formalism as a foundation of mathematics. 
Mathematics is not merely a formalism. 

Similarly one ought not to speak of a "proof of consistency for 
number theory" if the natural numbers are assumed to be already 
given. In the foundations of geometry, it is not presupposed that 
geometry is already given. One investigates whether the geometrical 
axioms are complete and compatible with one another. 

In order to obtain purity in laying the foundations there must be 
no misleading designations. 

Furthermore, investigations of results used in mathematics, 
arithmetic in particular, should not concern themselves with 
whether they are "more or less secure" but only whether they are 
true or false. If one speaks of results that are "more secure", then, in 
doing so, one admits that they are insecure (which is understandable 
when they are partly false). What good are mathematical proofs if 
they give no certainty? Certainty is not attained through fixed 
regulations and prohibitions, but through the revealing and 
eliminating of mistakes which have been made. 

We are not dealing with some philosophy here, but with pure 
mathematics and with logic. 

§11. Logic, that is correct reasoning, must be employed if one 
wants to establish mathematics. Logic can be investigated in detail, 
but it is to be considered as being intrinsically fixed and determined 
and also as being independent of us and our thinking. Thinking must 
align itself with logic in order to be "right thinking". Logic is just as 
invariant and permanent as are numbers and pure mathematics; 
only our knowledge of these things can change. 

Thus, what is correct according to logical thinking or logical 
reasoning does not depend upon Conventions, but is determined in an 
absolute way; there is an absolute distinction between true and false. 
In this sense there can only be one logic. There is also no sense in 
wanting to prove the consistency of this logic. It is consistent; 



Defense of the Foundations 
^ ' * 

otherwise it would not be logic. Contradictions arise only through 
mistakes, that is through disregard of logic. 

Logical thinking is not identical to "logical calculation", "formal 
logic", or "logistics". Such things can at most represent only a part of 
logical thinking, but in each case it must be checked whether it 
really does satisfy the requirements of logic. These things themselves 
must be "right", and indeed not only in a formal sense but also in 
meaning. What was said above (under §8) about formulas holds here 
as well. 

If one believes that mathematics or logic can be replaced by 
formalism, then one overlooks the fact that the cardinal error which 
leads to the antinomies consists in just this fact, that one restricts 
oneself solely to the formal interrelations between the objects under 
consideration and does not observe the real, inner relationships. 

Thinking can be supported by formalism, but it cannot be 
replaced by it. A sentence which is grammatically corrcct in 
construction can be quite false in content, and a formula produced in 
accordance with apparently sound rules also need not always express 
true facts. 

There are, however, very many things which are, by their vßry 
nature, not representable by formulas. This follows from nothing 
more than the denumerability of the formulas and the non-
denumerability of the things of analysis for instance. Thus the whole 
of mathematics can never be obtained by formal methods alone. 
From the absolute point of view these give a mere fragment. 

§12. Anyone who can think logically ought to know what a 
contradiction is. The "principle of contradiction" belongs among the 
basic statements of logic. It can be said that a contradiction arises as 
soon as something must be simultaneously both true and false. Here 
"false" means the same as "not true". Thus, if one contradicts oneself 
or, what amounts to the same thing in pure mathematics, if one 
contradicts some already established fact, then one has a 
contradiction. 

A contradictory assertion is never true: And an inconsistent 
thing, a thing whose properties are self-contradictory, can never 
exist. On the other hand, consistent things can always be taken to 
exist. In pure mathematics, existence means nothing more than 
freedom from contradiction. 

It is obvious that if mathematics is to be correct, then it cannot 
contain any insoluble contradictions, and thus no antinomies; nor 
can antinomies appear if one is careful never to contradict oneself. 
Where no contradiction is put in, none can come out. The antinomies 
of set theory can be clarified and dissolved in this way. If one retains 
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the antinomies, however, or only tries to detour around them, then 
one cannot distinguish between true and false. In that case, any 
nonsense could be assertecl, because from a Single contradiction all 
others follow. 

It is, for example, a contradiction to assert that the existent, that 
is consistent, sets cannot all exist at the same time. This would mean 
that existing sets do not exist, and that is certainly blatarit nonsensel 

Even distinguished mathematicians have been led astray into 
false opinions through unclarified antinomies. But we do not have to 
persist in error! 

§13. If I assert "I lie", or more explicitly "that which I am now 
asserting is false", then I contradict myself and thus maintain 
something false. That is to say, every assertion, just by its being an 
assertion, implicitly contains the allegation that it is true. If, 
however, at the same time it explicitly asserts that it is false, then 
this constitutes a contradiction. It amounts to a simultaneous 
assertion that something true is false or something false is true: The 
assertion as a whole is therefore false. One cannot claim in that 
event that the assertion is true; it would be asserted of something 
true that it is false and that assertion is false (see [1944, §2]). 

Why then is this simple explanation still not yet recognized? 
Apparently because it cannot be represented with the known 
formalism. Formalism overlooks the implicit assertion and can 
therefore merely State a contradiction, or at best evade it, but cannot 
solve it. 

But if one cannot solve even this simplest of paradoxes correctly, 
how then will one fare with the more difficult antinomies of set 
theory? 

When one looks for the mistake in the wrong place one risks 
making additional errors. 

It is remarkable how many different opinions and theories have 
been developed in connection with the antinomies, instead of simply 
asking what is true and what is false, and then acknowledging the 
truth. 

The liar paradox is usually dismissed as being meaningless. That 
is very convenient, but wrong. A meaningless assertion is not false 
and a false assertion is not meaningless. Now, if the assertion "that 
which I am just now asserting is false" were meaningless, then it 
would be false, because it would be asserted of something 
meaningless that it is false, and therefore meaningful. There would 
be an assertion of something that does not hold. Therefore, the 
quoted assertion cannot be meaningless, otherwise it would be false 
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ancl consequently not meaningless. Everywhere this argument is 
passed over in silence. 

§14. The antinomies have called forth, or reawakened, a "horror 
infiniti" even though they have absolutely nothing whatever to do 
with the infinite. 

The liar paradox seems to lead to a contradiction, but the infinite 
is simply not involved in the matter. In the whole of classical 
analysis not only does the infinite appear but even the uncountable 
infinity of the continuum, yet there are no antinomies at all. In 
actual fact the antinomies stem solely from defective circles and from 
the belief that one can "construct" things which are defined in a 
faulty way. 

This also holds for the "paradox of finite definability", which does 
not belong to classical analysis and which can be so restated that 
even there the infinite plays no part (see [1926a]). 

Now the opinion has arisen that everything which is "finite" is 
evident, admissible and incontestable, while the actual infinite, in 
particular the number system as a whole, must be rejected. 

Both are wrong. This view is a surrender to the antinomies. One 
believes that it is necessary to withdraw into the crampecl shelter 
furnished by the finite. 

The natural numbers are usually defined by the act of placing 
symbols one after another. This, it is supposed, can proceed 
arbitrarily far. Just try to make a trillion strokes and then still one 
more. This is nonsense. Number theory, however, considers far 
larger numbers. It will not do to regard numbers as symbols. In 
making the induction from n to n + 1, one needs all natural numbers 
up to the one under consideration. Are these all only symbols? What 
then is a Symbol? As one really cannot make arbitrarily many 
strokes, the natural numbers must be considered as being ideal 
things, which cannot all be written out individually but which 
nonetheless all do exist in an ideal sense. 

If, however, one admits the natural numbers as ideal things, 
then they are independent of us and our capacities and one must 
then be allowed to speak also of the totality of these numbers. The 
existence of these numbers is timeless, and therefore a "growing" 
sequence has no meaning. We are concerned with a definite 
aggregate. There are really no grounds at all for rejecting the 
sequence of natural numbers as a whole; to do so would be a 
thoroughly arbitrary prohibition. 

The question as to whether the series of natural numbers is 
terminating or non-terminating is quite another matter. Here we 
would like to know whether for every natural number there exists a 
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successor or not. It has already been mentioned that the existence of 
a non-terminating sequence of numbers is not a self-evident fact. The 
definition of an arbitrary natural number is circular; it refers to the 
concept of a natural number. That such a circle can stop the 
sequence has been shown in the example of the ordinal numbers, 
treated in §4. 

Since this same circularity occurs with the natural numbers, 
each one of which is finite, it follows that the finite is no less in doubt 
than the infinite, which would appear naturally if it were already 
known that every number has a successor. Thus it really makes no 
sense to admit the idea of so-called "existence in itself' for arbitrarily 
large finite systems but to reject it for infinite ones. 

It is just as unfounded to maintain that one could verify an 
arbitrarily large finite number of instances of a proposition of 
arithmetic but not verify infinitely many. In reality both are equally 
possible or equally impossible. Here 011 earth we can individually 
verify only a few of the possible instances, even with the very best 
Computers; we certainly cannot verify either infinitely many or 
arbitrarily many. Yet if one allows that proofs be carried out in 
abstracto, through an ideal procedure, then all the proofs can very 
well be carried out at the same time: It is quite irrelevant whether 
there are finitely or infinitely many. That a finite procedure has 
advantages over an infinite one is of course not disputed. 

Pure mathematics, however, ought not be bound by human 
inadequacies; these do not affect it. 

Chapter II. The Axiom System 

§15. The first objection to be raised and published against On 
the Foundations of Set Theory, Part I [1926b] originates in Reinhold 
Baer [1928a] and concerns the axiom of completeness in this set 
theory. In a subsequent reply I have rejected this objection [1928]; in 
fact it was already discussed in On the Foundations of Set Theory, 
Part I and refuted there. I did not think that I would have to answer 
Baer's remark [1928b] beyond what I have already said. Surely 
everyone who thinks the matter over correctly must see which of the 
two is right. 

Apparently some have not given the matter enough thought, and 
it has simply been concluded that he who "has the last word" is right. 
My further observations [1933] were not understood either, nor was 
any attention paid to them; so the objection was left unexamined 
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and, heedless of the eonsequences, others adopted it. Even quite 
recently it has been brought forward against "On the Foundations". 
For this reason it is necessary to deal with these things in detail. In 
the course of doing so attention must be paid to the fact that 
apparently unimportant, matters can turn out to be important for füll 
understanding, all the more so if some are of the opinion that Baer 
has "improved" the Statement of my axioms, which is definitely not 
the case. 

§16. Baer gives the first axiom, the "axiom of relation" the 
following form. 

"For arbitrary sets M and N - these are elements of S determined 
by the axiom system-, it is uniquely decided whether or not the 
e-relatiom holds between M and N, that is whether M e N or N e M 
is true." [1928a, 536] 

I have deliberately and with good reasons chosen the inverse 
relation ß in place of the usual e-relation as the initial relation, so 
that M ß i V means: M possesses N as an element. 

This is of significance for an understanding of the antinomies, 
because a set always determines its elements, but it cannot be 
concluded conversely that given arbitrary elements there is a set 
which corresponds to them. 

It is of great importance to know what elements a set has, but 
quite inessential to know in what sets it is contained. The empty set 
is characterised by the fact that it possesses no elements. The empty 
set is not affected by the sets to which it belongs. Do we need to say 
explicitly of every set that it must not occur as element of the empty 
set? And incidentally from where would one get all those sets as long 
as one did not yet have the empty set? 

Consider the difference between these formulations: "This box is 
empty" and "Every Single thing is not contained in this box". It seems 
that modern research into foundations gives preference to the second 
formulation. 

The empty set, as an object which possesses the b-relation to 
nothing, is very easy to define; the existence of other things is not 
presupposed. If, on the other hand, one requires of every set that it is 
not allowed to possess the e-relation to the empty set, then this is 
infinitely complicated, as soon as there are infinitely many sets. It is 
thus emphatically not a matter of indifference which relation is 
chosen as the initial relation. It is the ß- and not the e-relation 
which is important for the definition of a set. 
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Besides, the e-relation intuitively suggests "being contained in", 
which (except in quite simple cases) must be avoided in carefully laid 
foundations, because it can easily lead to mistaken conclusions. 

In an orderly laying of foundations one ought to pay attention to 
such matters. 

§17. I had formulated the axiom of relation as follows: For 
arbitrary sets M and N it is always uniquely decided whether M 
possesses the relation ß to N or not. 

Contrary to Baer's version, it is clearly stated from the outset 
that a relation directed from M to N is being dealt with and not a 
reciprocal relation between M and N as is the case with an identity 
or equivalence relation. 

In Baer's drafting of the axiom M e N could hold when M is 
identical to N; this difficulty remains because later Baer does not 
introduce identity but only an equality of sets. 

If one already knows what M e N signifies in set theory, then one 
knows that one is dealing with a non-symmetrical relation. But from 
where does this knowledge come? At the beginning of a theory it is 
impossible to presuppose the very first concept which has to be 
introduced and explained as being already known. 

The asymmetrical form of the symbol e does not decide anything. 
For equivalence relations one usually employs symbols without left-
right symmetry, « or =, for example. Conversely symmetrical symbols 
usually represent asymmetrical relations, for example "a | b" for "a is 
divisor of b". One ought not, however, make newly introduced 
concepts implicitly dependent upon the form of the notation used for 
them. 

Thus, if one interprets "M e N" as signifying the identity of M 
and N, and the next axiom of Baer, concerning the equality of sets is 
added, then as models for the set theory of Baer one could take 
systems of arbitrarily many non-identical things which are all equal 
to one another, and concerning which otherwise nothing is stated. 
These are surely extremely uninteresting set theories. 

If, however, one improves Baer's version of the first axiom and 
introduces the e-relation of M e N as a relation from M to N, then 
this results in a new discrepancy since Baer says later [1928a, 538] 
that a set A stands "in the e-relation, B e A" to certain sets B. This is 
wrong; A does not stand in the relation e but in the inverse ß-
relation to B. 

§18. The elements of a set M, the elements of these elements, 
and so on, are the "sets essential in M". Baer clefines these in such a 
way that the set M always belongs to them. This is not allowable for 
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an investigation of the paradoxical sets and the antinomies. It 
constitutes a very important difference whether a set "is essential in 
itself', when it contains itself as an element, for instance, or whether 
this is not the case, as happens with the empty set. The former kind 
is always circular. According to Baer's definition all sets would be 
essential in themselves and thus they all would be circular (see 
Finsler [1926b, §13]; nothing more would be left over to be circle-free. 

§19. A system of sets that contains all elements of each of its 
members was called a "transitive system" in "On the Foundations of 
Set Theory, Part I" [1926b, §7], The sets that are essential in M are 
those sets which belong to every transitive system that contains all 
elements of M. The system of sets essential in M was denoted by 

Two transitive systems of sets E and E' are then, in general, 
taken to be isomorphic whenever there exists a reversible, single 
valued and relation-preserving mapping between the sets of E and 
the sets of E'. That is, there is a one-to-one mapping for which: If A 
and a are mapped onto A' and a' respectively with A ß a holding, 
then A' ß a' holds as well, ancl conversely. 

Baer on the other hand defines the transitive systems E M and E 
M, which according to him also contain the sets M and M 
respectively, as being isomorphic only if M is mapped specifically 
onto M. This is an unusual requirement for an isomorphism nor does 
it make good sense. Under certain circumstances it may not be at all 
possible to see from the systems alone what sets within them are 
meant by M and M\ Concepts should not be made dependent Lipon 
the notation employed. 

For example, A = {A, B}, B = {A}. Here the systems E^ and E ß are 
identical; they consist of the two sets A and B. According to Baer 
they are not isomorphic, because M = A and M - B. 

This example, which by the way can be found in "On the 
Foundations of Set Theory, Part I" [1926b, §7] shows that an 
isomorphism of the systems and E ^ taken in the usual sense, 
does not suffice for identifying the sets M and M. One can of course 
map A onto A and B onto B; the system composed of the two sets A 
and B is isomorphic to itself. A cannot, however, be identified with B 
because A contains itself but B does not. 

I have therefore called the sets M and M' isomorphic whenever 
the systems E ^ and E ^ , which are essential in M and M' 
respectively, can be mapped one onto the other in a one-to-one, 
reversible and relation-preserving fashion such that the elements of 
M are mapped onto those of M'. Because of this the second axiom, the 
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"axiom of identity", could be briefly formulated thus: Isomorphic sets 
are identical. 

§20. Now, in the original version, as given in the "On the 
Foundations of Set Theory, Part I" [1926b, §7], I made an 
inadmissible simplification in the definition of isomorphism of sets. I 
believed that it sufficed to add to the systems E ^ and E ^ the sets M 
and M respectively and then to require that M can be mapped onto 
M\ because then the elements o f M are mapped onto the elements of 
M . It is not easy to see what is wrong with this without producing an 
example. 

Let J be a set which contains itself as its sole element, J = {J}. 
Further, let L be a set that does not contain itself but which contains 
the set J as its only element, J being different from it, so that L = {J) 
is satisfied with L * J. Here L = {J} does not mean that L is that set 
which contains J as sole element, but only that L is one such set. 

The systems E j and EL both consist of only the set J , and 
according to the appropriate definition of isomorphism the sets J and 
L are isomorphic. Therefore, according to the axiom of identity, they 
would have to be identical. This means that no such set L * J can 
exist in a system E which satisfies the axioms. 

According to the mistaken definition J and L would not be 
isomorphic, because J contains itself but L does not; there would be 
two different sets with the same elements in contradiction to 
proposition 5 of "On the Foundations of Set Theory, Part I" [1926b, 
§8] which states that two sets which possess the same elements are 
identical. 

G. Köthe brought this discrepancy to my attention. To my 
knowledge this is the sole mistake to be found in "On the 
Foundations of Set Theory, Part I". I corrected it immediately [1928] 
by returning to the original definition. 

§21. In Baer's version the second axiom reads as follows: 

M - M - where M and M are sets - if and only if 
and E^, are isomorhic, that is if there exists a one-to-one 
mapping of the elements of EA/ onto those of E ^ such 
that: 

1. M is mapped onto M'; 
2. If Ai has image A\ (£=1,2) then from Al e A2 it 

follows that A\ e A'2 and conversely. [1928a, 536f] 

This version is incorrect for the reasons given in § 19 and in §20. 
Moreover, in place of identity only a relation M = M' is defined. 
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Shortly afterwards a "weaker axiom of equality" and a "relation of 
equality for set theory" are mentioned. This gives the impression 
that several sets can be equal to each other in the system Z in much 
the same way as many line segments can be congruent to each other 
in geometry. 

In an unambiguous set theory this is obviously not admissible. 
If, for instance, a set possesses two equal sets as elements, how 

many elements does it then possess? One could, as is otherwise 
customary in set theory, require that this cannot occur, since the 
elements of a set must be "well differentiated". Against this there 
stands the other requirement that from a e M and a = b there must 
always follow b e M. Thus a set would have to contain everything 
that is equal to one of its elements. How many of them are there? 

One might have a makeshift "relativity of cardinal numbers" and 
say that "set theoretically" there is only one element, even though in 
reality there are many. One would have to speak of "set theoretically 
uncountable" sets even though they actually contain only countably 
many elements. 

Such obscurity and ambiguity has no place in a meaningful set 
theory. The system Z of sets is permitted to contain always only one 
specimen of each set and this has to differ essentially from all other 
sets in Z in terms of the ß-relation alone. This is the meaning of the 
second axiom. 

§22. Frequently the proposition which states that sets which 
possess the same elements are identical, is to define identity for sets. 
With arbitrary sets of sets, however, this is not admissible. How 
should one know whether the elements are the same if one does not 
already know which sets are identical? How could one decide 
whether J = {J} is identical to K = {K} or not (see [1926b, §8])? An 
example in "On the Foundations of Set Theory, Part I" [1926b, §18] 
shows that this indefiniteness does not arise only in connection with 
sets which contain themselves or which are essential in themselves. 
This definition of identity for sets contains a vicious circle and is 
therefore useless. 

Baer appears to be heedless of this. In the works of Fraenkel 
[1926] and Vieler [1926] which he quotes, this circle is disregarded. 

A similar objection could be made against a definition of identity 
in terms of isomorphism: A one-to-one mapping has an exact 
meaning only after the identity of sets has been decided. Even given 
this objection, it would still be impossible to have arbitrarily many 
"indistinguishable" sets enter into the theory. Different sets must be 
distinguished in essence, namely by the ß-relation. 
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From the axiomatic (not formal!) Standpoint which was adopted 
in "On the Foundations, Part I" the objects of the system £ are 
considered, as is customary, as being given entities whose identity is 
determined in another way, and the "axiom of identity" merely 
excludes from the system £ those things that do not satisfy it. 

Seen from a higher Standpoint, however, it can be required that 
sets be characterized by the ß-relation alone without the use of any 
other property. From that point of view the objection described above 
would be justified. 

From this Standpoint the systems of sets must be determined not 
merely as a "structure", that is only up to isomorphism, but uniquely 
(as in Finsler [1954]). The identity of sets is then defined so that two 
sets given by means of the ß-relation are always considered to be 
identical whenever possible. By these Standards two sets are always 
identical if the assumption that they are identified produces no 
contradiction between the ß-relations involved. 

Suppose that the sets A and B were previously given by the 
relations A ß A, A ß B, B ß A. It would actually follow that A = B, 
because this is compatible with the conditions; it would not be 
allowed to require that A * B. The set A would be identical to the 
J-set, J = {e/}, but it is different from the empty set, because A ß A 
holds, whereas the empty set never possesses the relation ß to 
another set. Were we to attempt to identify A with the empty set a 
contradiction would result. 

§23. Next, Baer stated that one is always entitled to speak of a 
set theory whenever one has a system £, in which axioms I and II, 
that is the axioms of relation and identity, are fulfilled. 

It is correct, as Baer mentions later, that these axioms do not 
contain any condition of set existence. This is of the greatest 
significance; for, it is just the non-satisfiable existence conditions, 
those that require the existence of certain sets even when their 
definitions contain a contradiction, that lead to the antinomies. 

In any system which satisfies the first two axioms, the only sets 
that actually exist are those whose definition contains no 
contradiction. 

Now, the system £ contains all those sets which are free from 
contradiction, all those which exist, or all those which occur in a 
system in which isomorphic sets are identified. This total system 
exists because nothing impossible is required by its definition. It 
includes only the existing sets. It is nonsense to suppose that existing 
sets should cease to exist when they are brought together (cf. §12). 



Defense of the Foundations 
' ' > 

The total system 2 satisfies axiom III, the "axiom of 
completeness". It cannot be extended because there are no sets still 
remaining after all sets have been brought together. 

§24. In order to attack the axiom of completeness Baer asserted 
the following proposition which is, in fact, false. 

Let 2 be a system of sets which satisfies axioms I and 
II, then either: 

2 is consistent, that is, there are two sets A and 
B in 2 such that A e B and A B hold simultaneously, 
or eise 

2 is capable of extension, that is, there exists a 
system 2 of sets such that: 

1. It satisfies I and II; 
2. If A and B are contained simultaneously in 2 and 2 

then A e B holds in 2 if and only if it holds in 2; 
3. There exists a set which is contained in 2 but not in 

2. [1928a, 537] 

Thus Baer allowed the possibility that the system 2 is 
inconsistent. But what is an inconsistent system of sets? A Statement 
or assertion can be inconsistent, but then it is false. A definition can 
be inconsistent, but in that case it will not be satisfiable. An axiom 
system can be inconsistent, but then nothing would satisfy it either. 
But how can a system of sets be inconsistent? Inconsistent systems of 
sets do not exist. 

Concerning this Baer writes in the course of his "proof": "Thus 
N e N and N £ N are true simultaneously which means that 2 is 
inconsistent". In this, N is meant to be a set belonging to 2. So the 
system 2 would be a system of sets which, by hypothesis, satisfies 
axiom I, but which at the same time does not satisfy this same 
axiom. How can a system simultaneously satisfy an axiom and fail to 
satisfy it? What has happened to the law of contradiction? 

A system 2 can satisfy axiom I or it can fail to satisfy it. To do 
both at the same time, however, is impossible. 

One could perhaps suppose that the expression "2 is 
inconsistent" means that 2 is inconsistently defined. But against. it 
remains the fact that 2 is assumed to be an actually existing system 
of sets. 
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The way Baer expresses himself shows clearly (and later this 
becomes still more apparent) that he has not come to terms with the 
antinomies. He permits the antinomies, and thus allows 
contradictions. Nothing worse can happen in mathematics. In spite 
of this he is insistent on criticizing and will not take into 
consideration the fact that once there is an antinomy anything and 
everything can be proved or refuted. But such "proofs" are 
thoroughly worthless! 

§25. The first "possibility" of Baer's propositions in §24 thus 
proves to be impossible. The second alternative, that E is necessarily 
"capable of extension", is also false, as has already been shown above. 
If the system £ does not yet contain all sets, then it can of course, be 
extended; that is trivial. But if E contains all sets, i. e., all that there 
are, then this is no longer possible, for, given all sets, there does not 
exist still another. 

How many "logics" will be needed before it is seen that there 
cannot always exist still one more? Once one already has all, one 
cannot have more: This surely ought to be understood by every 
reasonable man, as long as he has not become so confused by the 
circumstances surrounding the antinomies that he has forgotten how 
to think logically. A person cannot be prohibited from speaking about 
all sets. 

§26. In order to "prove" his proposition, Baer considers the 
system N of exactly those sets from E which satisfy A g A. This is 
admissible. Then he says: 

There now occur two possibilities: Either 
1. There exists a set Â  in E which corresponds to N, so 

that from A r) N it follows that A e i V and conversely; or 
2. there does not exist such a set N in 2. [1928a, 537] 

In the first case he concludes that 2 is inconsistent. To be fully 
correct it would have to be stated that this case cannot occur. 

In the second case Baer tries to "adjoin to 2 a set N 
corresponding in the above sense to N". By the hypothesis of this 
second case no such set N exists in 2, and if 2 really contains all sets, 
then this means that there can be no such set whatever. How can 
one add toH a set which does not exist? 

It is not only that the proof of the existence of the set N is wrong: 
Such a proof is impossible. The set N is inconsistently defined and 
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therefore cannot exist at all. So the system Z cannot be extended by 
adjoining it. 

Thus, the proof of Baer is wrong and the proposition to be proved 
is false. 

§27. Baer does not object to speaking of "all possible consistent 
set theories". He contends, however, that"their union does not yield a 
consistent set theory", and that "so to speak" the "upper limit" of all 
set theories is inconsistent". 

The union itself is still taken to be correct, only, in this manner 
of speaking, the result is not a consistent set theory, but an 
inconsistent system of sets. It has already been shown in §24, 
however, that this is meaningless; inconsistent systems of sets do not 
exist. 

It is apparent from this, along with the earlier description "£ is 
inconsistent", that it is not merely an incorrect mode of expression 
that is at stake here, but really defective thinking. 

§28. In connection with the proposition given here in §24 Baer 
refers to theorem number 10 of Zermelo [1908], This could easily give 
the impression that something similar is to be found in Zermelo. 
That, however, is definitely not the case. 

Theorem number 10 of Zermelo [1908] states that every set M 
possesses at least one subset which is not an element of M. This 
holds for the domain D being consiclerecl by Zermelo. From the 
theorem it follows, according to Zermelo, that not all things of the 
domain D can be elements of one and the same set, which means 
that the domain D is not a set itself This is correct. 

Zermelo, however, in no way concludes that either D is 
inconsistent or D must again be capable of extension. That is a big 
differencel 

Now, in the total system £ there actually does exist a set of all 
sets, which thus corresponds to the total domain S. One can conclude 
from this that not all of Zermelo's axioms are satisfiecl in this 
domain; in particular "the axiom of Separation" is not satisfied. 

In the system of circle-free sets the axioms of Zermelo are 
satisfied. This system must not contain, as Zermelo shows, either the 
set of all circle-free sets or the set of all circle-free sets that are not 
members of themselves. Nevertheless, this system of sets cannot be 
extended. The two sets just named do indeed exist and are moreover 
identical, because no circle-free set contains itself. This set is a 
circular set which, for this reason, cannot be inserted into the system 
of circle-free sets without producing a contradiction. 
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§29. Baer concerns himself next with axiom III, the "axiom of 
completeness". It has already been observed in §23 that the total 
system Z satisfies this axiom. Axioms I, II, ancl III are, contrciry to 
what Baer maintains, simultaneously satisfiable without 
contradiction. It is hardly surprising that this goes against his false 
Statement. 

Baer goes on to claim that the union of all possible set theories is 
a false inference. Earlier he would have allowed it. Why should it be 
impossible now? All consistently existing sets (according to Baer 
those occurring in a "set theory") are simply brought together; in 
doing so isomorphic sets are taken to be identical. This yields a 
consistent system of sets, which represents the desired union. This 
consistent union provides a set theory which is free from 
contradiction. 

It is an error to reject such a union, for there are no grounds for 
such a rejection. 

§30. The objection of Baer will be found, as mentioned in §15, in 
"On the Foundation of Set Theory, Part I" [1926b, §12] and was 
already refuted there. There was a reference to "Are There 
Contradictions in Mathematics?" [1925] to which Baer obviously did 
not pay any attention. He could have found a complete refutation of 
his view on the next to last page of that paper. 

In order to attack the refutation given in "On the Foundations of 
Set Theory, Part I", Baer contends that the object N, which he wants 
to adjoin to the system Z, really is something "new", that is, an object 
not belonging to the total system Z. Thus it belongs to none of the 
systems satisfying axioms I and II; but on the other hand, it satisfies 
these axioms when joined with Z. This is an outright contradiction! 

If one object can be united with another object to form a specific 
system, then it belongs to at least one such system; this cannot be 
helped. It cannot at the same time belong to no such system. 

If the thing N, however, belongs to a system satisfying axioms I 
and II (here Baer's mode of expression is not quite clear), then it is 
not a new thing, that is, a thing not in the total system Z! 

The contradiction can only be solved in the following way: There 
does not exist a thing N with these properties. 

So in reality the contradiction lies in the definition of N and not, 
as Baer maintains, in the axioms. If one includes in the total system 
Z only the sets which belong to one of the systems satisfying axioms I 
and II, then axiom III does not appear here at alll 

This shows clearly, contrary to what Baer maintains, that the 
consistency of the axiom system is by no means assumed. This 
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consistency was in any case proved earlier and is no more thrown 
into doubt than algebra is thrown into doubt by attempts at 
"squaring the circle". 

§31. Next Baer says: "N is indeed not postulated but 
constructed!" But how can one construct a thing which has these 
inconsistent properties? Such a thing cannot exist at all. To think 
that impossible things can be constructed is exactly what leads to the 
an tinomies. 

What does it mean to "construct"? A craftsman may construct 
many things but ultimately their number is limited. He cannot 
construct arbitrarily many while always being able to produce one 
more. 

In geometry the word "constructible" has a definite meaning. This 
meaning presupposes that geometry, or at least the number system, 
is already given. It still must be checked whether a required 
construction can be performed. Even the task of constructing a 
triangle given three sides is not always possible; certain conditions 
have to be satisfied. 

Why should a "construction" always be feasible in set theory, 
even when it is contradictory? Circle-free constructions are indeed 
possible; but one must be on guard against non-satisfiable circles! 

It is shown that there exist non-satisfiable rules of construction 
by the example given in my "Reply" [1928]: Write on a blackboard a 
number that is one greater than the largest number written on the 
board. Of course, it is meant that the "new" number shall be one 
greater than the greatest number written formally on the board. 
There does not exist a number which satisfies this requirement when 
the requirement itself is on the blackboard. One cannot claim that 
the "new" number is constructed! 

Some might think that this example shows that the system of 
numbers written on the blackboard is always capable of extension. 
This does not hold either: As soon as the blackboard is füll there 
cannot be any more. 

§32. It is true that one cannot be prohibited from thinking of a 
thing N which possesses a certain relation to exactly all sets A for 
which A ß A does not hold. But this thing N is not a set, and the 
"new" relation is not the ß-relation but another relation, say y, which 
cannot be identified with ß. 

If one starts from the e-relation which is inverse to ß, one can 
introduce r| as a new relation which is inverse to y. Baer uses such a 
relation with systems, so that A r\H means that the set A belongs to 
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the system One cannot always identify r\ with e because not every 
system corresponds to a set. 

In spite of this, one is at liberty to consider the system as an 
"individual thing", which in general need not be a set. The object N 
considered above is not a set but at most a system. 

That the originally given primitive relation ß must be carefully 
distinguished from the other relations derived from it was given 
special prominence in an additional note to the "On the Foundations 
of Set Theory, Part I" [1926b, §181. Thus it is not permissible to 
identify the b-relation with the e -relation which is derived from it, or 
conversely, although both relations satisfy axiom I equally well. 

The same objects can thus stand in different relations to one 
another: The fact that one relation can be derived from another does 
not prevent them from being distinct. 

The subset relation is derived from the membership relation and 
cannot be interchanged with it. It is hardly surprising that such 
interchanges lead to error. 

In the axiom system for sets only one relation ß is given 
explicitly; it cannot be replaced by a derived relation. 

§33. Hilbert's Observation that in the absence of the 
Archimedean axiom, the axiom of completeness for geometry would 
constitute a contradiction is quoted by Baer. This was of course well 
known to me at the time of writing "On the Foundations of Set 
Theory, Part I" [1926b], However, as I have already indicated in the 
"Reply" [1928], it is not to be taken literally. It deals with an 
apparent contradiction that can easily occur in set theory as well. 

The Statement that a system of points, lines and planes that 
satisfy Hilbert's axioms I — IV can always be extended, holds for the 
relatively simple systems that can be obtained from the usual 
geometry by means of certain successive extensions. Such a system 
can always be extended as long as one does not. consider all possible 
extensions. But the union of all possible extensions gives rise to a 
system which can no longer be extended and which, therefore, 
satisfies the axiom of completeness. 

In a similar way it can be shown in naive set theory that the set 
of all subsets of a set is of greater cardinality than the set itself. 
Thus, in naive set theory there cannot exist a greatest cardinal 
number. In complete set theory, which encompasses all pure sets, this 
Statement no longer holds; there the set of all sets has the greatest 
cardinal number. This is only an apparent contradiction, and in 
geometry it is exactly the same. 
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Thus, contrary to the remark of Baer, the axiom of completeness 
can be applied. It is necessary for a complete theory having no 
restrictions on set formation. 

The precise meaning of Hilbert's Observation is that in geometry 
the Archimedean axiom ensures that the axiom of completeness is 
already satisfiable in a circle-free domain. It is of course quite 
obvious that Hilbert meant only domains of this kind, even though 
he did not specifically define them. In these domains his Observation 
holds. 

A restriction similar to that provided by the Archimedean axiom 
in geometry is, however, not knoivn for set theory. Moreover, it is 
just this unrestricted set theory that is to be investigated here. 

Thus, there really is a fundamental difference between the 
application of the axiom of completeness in Euclidean geometry and 
its application in set theory. This axiom and also the essential use of 
the concept "all" are necessary for completeness in set theory. In 
geometry, however, replacing the axiom of completeness by other 
postulates which do not presuppose the concept "all" is conceivable, 
at least in principle, though it is probably not feasible in practice. 

For example, if the continuum is defined to be the set of all 
subsets of the system of natural numbers, then the concept "all" is 
used, but only in such a way that the result still remains circle-free. 
These subsets can in principle also be considered as being given 
individually. This also holds for the class of all sets; this latter 
necessarily presupposes the concept "all". Otherwise it could still be 
extended. The definition "all even prime numbers" can be replaced by 
the definition "the number two"; thus in this case the concept "all" is 
not necessary. On the other hand, "all sets" cannot just be listed. If 
the sets essential in themselves are excluded, then without the 
concept "all" only the circle-free sets are obtained, not all sets. But 
this is no reason for rejecting the "totality of all sets", it just cannot 
be obtained in a circle-free fashion. 

Compare this with the remarks in §60 below. 

§34. If only axioms I and II are retained and the axiom of 
completeness is omitted, then the extent of the domain of sets under 
consideration is extremely arbitrary. Axioms I and II are satisfied in 
every complete system. One can thus proceed from an arbitrary set 
or also from an arbitrary class of sets and consider the sets essential 
in them. In either case the axioms are satisfied. 

This has nothing whatever to do with the special investigations of 
Skolem [1922] into "set theoretic relativity" to which Baer refers 
[1928a, 539]. The cardinal numbers in these domains always retain 
their absolute meaning as was pointed out in "On the Foundations of 



186 Foundations 

Set Theory, Part I" [1926b, §12], They are not made relative by 
means of specially prescribed rules of construction; these do not arise 
here. That, however, is certainly what is meant by the relativity to 
which Baer refers. 

A set is uncountable if there does not exist an enumeration of its 
elements and not because there is no enumeration obtainable by 
special methods. The class of all subsets of the natural number 
system is absolutely uncountable; it cannot be found in a countable 
domain. 

If, in spite of this, one admits only those subsets which satisfy 
certain special conditions, then it can be that one obtains only 
countably many. To say that this class is metaphorically 
uncountable is unnecessary and misleading from the absolute 
Standpoint. 

What is meant by Baer's concluding remark that "this set 
theoretic relativity is at least made safe 'upwards'" [1928a, 539]? This 
really is meaningless. 

§35. It still has to be asked whether it is practical to restrict the 
domain of sets, perhaps by using rules of construction. 

For the investigation and clarification of the set theoretic 
antinomies one must use the total system of all pure sets: It is just 
here that these difficulties really become apparent. It is very 
important to know that this system exists. 

One needs this system to define circle-free sets. These sets form a 
system in which, without unnecessary restrictions, the usual axioms 
of set theory hold. 

One also requires these sets in order to prove the fact that 
infinitely many objects and also uncountable cardinal numbers really 
do exist. This is the only means by which the existence of the infinite 
number line and the continuum can be assured. 

The class of circle-free sets suffices for all applications of set 
theory. 

Additional restrictions could be useful for many purposes, just as 
one may find it useful to restrict a numerical computation to a 
certain number of significant figures. 

Number theory proper ought to deal with the totality of all 
numbers: Similarly set theory proper concerns the totality of all sets. 

It should be particularly stressed that sets are only a 
generalization of the natural numbers: These latter possess the 
relation ß to their "predecessor", either to exactly one other natural 
number or to none. Sets have this relation ß to their "elements", to 
arbitrarily many sets. 
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§36. Everything written in my "Reply" [1928] to Baer [1928a] 
remains completely valid. One should refer to it rather than have 
these points repeated here. 

In his observations [1928b] to this reply Baer disregarded almost 
everything and only two points were picked out. With regard to both 
of these he is wrong once again. 

The assumption that the construction of the set N is of a "circular 
nature" in certain circumstances (these Baer suppresses) certainly 
does not stem from a misunderstanding on my part. 

Baer has not placed restrictions on the system of sets satisfying 
axioms I and II. Now, if this system E contains all sets, which is not 
prohibited, then, precisely through the fact that it is to be a set, the 
allegedly new set N would certainly have to belong to the system £. 
That is the circle. 

The arguments of Baer are a typical example of how one can 
"prove" false propositions with a paradox which is not understood. 

Should the "new" thing N (or better N) be a class rather than a 
set, then the circle disappears and with it the contradiction. But then 
there is no extension of the system of sets. If, however, one requires 
that Â  be a set, then this set must, in as much as E contains all sets, 
belong to the "already existing sets in the proposed set system Z", 
even if "it is explicitly demonstrated" that this is not possible. Thus 
in this case there is a non-satisfiable circle and a contradiction; such 
a set N does not existl 

As with the usual paradox of the "set of all sets which do not 
contain themselves as elements", which we are actually dealing with 
here, it is "explicitly demonstrated" that it cannot contain itself. In 
spite of this it would have to contain itself and therefore it cannot 
exist. 

§37. The second of Baer's remarks concerns Hilbert's argument, 
quoted in [1928a, 539], on the axiom of completeness (see above §33). 
In order to attack my explanation Baer maintains that "every real 
field can be extended to form a larger real field adjoining a 
transcendental element • although this field need not be non-
Archimedean." [1928b] 

This, however, does not holdl Just as a greatest transfinite 
cardinal number is obtained from the union of all transfinite ordinal 
numbers (see §4 above), so also a real field, the greatest real field, is 
obtained from the union of all transcendental extensions. No further 
transcendental elements can be adjoined to this: To suppose as much 
would result in an unsatisfiable circle, and therefore with a 
contradiction. 
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In this case, one does not advocate a restriction to circle-free 
objects. 

Obviously, previous research tacitly assumed that all 
constructions are circle-free, since it was not realized that circular 
contructions could safely be carried out using the concept "all". One 
must be clear about what is meant and one must define what circle-
free constructions are in general. Otherwise one just proves 
falsehoods. 

§38. Fraenkel's reviews [1928a, 1928b, 1928c] which are quoted 
below refer to the discussion between Baer and myself in the 
following way. 

Baer [1928a]: "A criticism of the crucial point of 
Finsler's "On the Foundations of Set Theory, Part I" 
[192Gb], namely it is to be shown that each consistent 
model of a set theory of Finsler's kind is always still 
capable of extension - in contradiction to the 'axiom of 
completeness' given there." 

Finsler [1928]: "Attempt at refutation of the 
aforesaid criticism". 

Baer [1928b]: "Countercriticism of the previously 
mentioned reply." 

As has been demonstrated in detail in §15 - §35, the criticism of 
Baer [1928a] is totally untenable, and also false in its crucial 
contention. 

The "Reply" [1928], as shown in §36 and §37, was not invalidated 
by the erroneous countercriticism of Baer [1928b], and is, as has 
been made abundantly clear in the course of the preceding, much 
more than a mere "attempt" at refuting of Baer [1928a]. 

It appears that Fraenkel has given insufficient attention to my 
reply [1928]. At least, he has not read "On the Foundations of Set 
Theory, Part I" [1926b] accurately; this even shows in his text ([1923, 
200] and [1928d, 289]) where he retains the Statement that in 
Zermelo [1908] the axiom of choice (in its usual formulation!) can be 
stated without "essential" mention of disjointness of the given sets. 
This indicates unfamiliarity with the counterexample, consisting of 
the set {{a}, {b}, {a, b}}, in §17 of "On the Foundations of Set Theory, 
Part I" [1926b], 
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§39. I can assure Fraenkel that I did not take the idea of 
investigating pure sets, whose elements are themselves again only 
pure sets, from him. At the time of my inaugural lecture at Cologne 
in the year 1923 where this idea was expressed and established 
(Finsler [1925]), his investigations into these matters were not 
known to me. A few years before I had intimated to Bernays, for 
instance, about the idea of adopting the system of pure sets as the 
foundation for set theory. 

In passing it might also be mentioned that "pure sets" hacl been 
used already for the theory of ordinal numbers by Zermelo. In 
addition, Fraenkel has not introduced a name for them. 

The really important point is not that one considers only pure 
sets, however, but it is the insight that this is the sole restriction that 
is needed in order to obtain a consistent set theory. One obtains a 
clearly defined system of sets which contains all pure sets and which 
thus corresponds to the unique system of all natural numbers (see 
Finsler [1925]). Even to this day Fraenkel is still infinitely far 
removed from this insight. 

Chapter 3. A Review 

§40. T. Skolem has reviewed "On the Foundations of Set Theory, 
Part I" [1926b] in [1926], This review has been reproduced here 
completely to allow a füll commentary. 

It begins thus. 

P. Finsler, On the Foundations of Set Theory, Part I: 
Sets and Their Axioms [1926b], 

This paper contains an attempt at founding set 
theory in such a way that on the one hand it does not 
lead to the antinomies and on the other it constitutes an 
absolute and uniquely determined theory. 

That is correct, only the attempt has not failed as Skolem later 
suggests but has indeed succeeded. 

§41. It continues. 

The attitude of the author emerges sharply already 
in the introduction, in that he says there that for the 
truth or falsity of a mathematical proposition it is quite 
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irrelevant whether we can prove or refute it with our 
human means. 

That is not exactly what I saidl A mathematical proposition is 
self-evidently true if we can prove it by our human means and it is 
false if we can refute it. This is certainly not irrelevant! 

A mathematical proposition does not, however, become true only 
when we can prove it and it does not become false only when we can 
disprove it; it is true or false even if we do not know which is the 
case. 

Some might say that the proposition is true "for us" only when 
we have proved it. That, however, means something different, 
namely that we realize that the Statement is true only when it has 
been proved. 

We are investigating pure mathematics; it is independent of the 
coursc of time and of our limited resources. 

§42. 

Many will find that what is essentially meant by an 
undecidable proposition being "true" or "false" is very 
unclear. 

Skolem cannot have taken up t h e reference to "Formal Proofs a n d 
Decidability" [1926a] that was given at the relevant place in "On the 
Foundations" [1926b, Introduction], In that paper it was shown that 
there are false propositions (and others that are true) that are 
formally undecidable, but which in spite of this can be seen to be 
actually false (just as with others, that they are true). It is clear from 
this what is meant by absolute truth or falsehood of formally 
undecidable propositions (it is always formally undecidable 
propositions that Skolem has in mind). The question as to whether 
there also exist absolutely undecidable propositions has been 
investigated later in [1944]. 

The paper "On the Foundations" [1926b] presupposes the earlier 
paper [1926a], How can anyone assess the Situation correctly if he 
lacks one of the basic underlying assumptions? 

We do not know to this day whether Euler's constant is rational 
or irrational, and it is conceivable that we shall never be able to 
decide this matter. In spite of this, we say it is rational if it is equal 
to the quotient of two rational numbers and otherwise irrational: The 
law of the excluded middle holds. In "On the Foundations" this law is 
presupposed to be part of basic mathematics; this means that only 
those things that satisfy it are investigated, that is, those whose 



Defense of the Foundations 
' ' > 

existence is unambiguous. Whether we can personally decide does 
not matter. 

It was also clearly stated in "On the Foundations" [1926b, 
Introduction] that those investigations for which the law of the 
excluded micldle is rejected are not being considered. If Skolem wants 
to judge the work, then he is obliged to adopt this Standpoint, that is, 
he must make the same assumptions and not speak about other 
things which have absolutely nothing to do with the work in 
question. 

In pure mathematics it is usually supposed that the meaning of 
"true" and "false" is known. 

§43. 

In chapter I, §1 he discusses first of all the false 
assumption which leads to Russell's antinomy, i.e., the 
assumption that one can so reason with a domain of 
things that any of the things whatever can be collected 
together into a set, which is again a thing of the domain. 

This does not, however, mean that one is not allowed to speak of 
the system of all sets. The only thing that is forbidden is the 
assumption that every class N of sets corresponds to a set N. There 
really are classes that do not correspond to sets. 

In §2 he speaks of circular definitions. The author's 
later treatment of sets of certain objects as not being 
identical to their totality, or aggregate, but only things 
which are associated with the objects, appears to the 
reviewer to be only a playing with words; for, every 
collection of objects can be viewed as such a correlated 
thing, quite irrespective of whether it is called a set, 
totality or aggregate. 

As usual, the objects themselves are collected into a "totality" or 
"aggregate". In a thorough set theory a set of objects must be a single 
thing; this is thus something quite different. I have certainly made 
this difference very clear in "On the Foundations". It is 
incomprehensible to me that anyone can call this "playing with 
words". 

If one set possesses two elements, then it is certainly not the case 
that one thing is identical to two things, with the consequence that 
one equals two. If matters like this are confused, then of course one 
will arrive at contradictions and antinomies, rather than a useful set 
theory. 
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It is of no significance that Unguistically the Singular is used 
when the class of elements of a set is mentioned. It is all a question of 
what is meant by this. In this case it is not the collection as such 
which is meant but the elements themselves and indeed all of them 
without exception. If the class (or totality) of the pupils in a school 
has passed an exam, then it is not an abstract concept which has 
passed the exam but each individual has passed. 

The heading of §3 of "On the Foundations" was "Sets and 
Classes". In §4 system of sets were introduced where the sets are 
objects; the systems, however, are collections of sets. 

The distinction between "set" and "class" is quite common today 
in set theory. According to Weyl [1946, 11] "the introduction of 
classes [...] is due to Fraenkel, von Neumann, Bernays and others." 

§44. Here I want to interpolate the following remark: According 
to Cantor a set is, put briefly, the collecting of well determined 
objects into a whole. In [1925] I commented on the expression: "thus 
the collecting itself". 

In [1928d, 13] Fraenkel says with regard to Cantor's definition: 
"Naturally it is not the act of collecting but the outcome of this act 
that is meant." Is that really so natural? In any case Cantor did not 
say this. In a very naive set theory one will, to be sure, at first think 
of the result of the collecting. But what does one get as a result if one 
collects together, for example, the number 1? Well, the number 1 
itself, of course! In spite of this one says in set theory that one must 
not confuse a set which contains only one element with this element. 
And what does one get if one collects together nothing at all? Well 
surely nothing at all! How then does one come to the empty set? 

The Observation of Fraenkel can only serve to complicate insight 
into the foundations of set theory and above all into the essence of 
the paradoxes. Why should one not understand by the concept "set" 
the operation of collecting elements together? Then everything is 
clear. The result of an operation cannot be obtained without carrying 
out the operation; therefore, this latter is certainly necessary. If, 
however, because of a non-satisfiable circle, the operation cannot be 
performed, then there will not be any result either. If, in spite of this, 
the result is postulated, then one has an antinomy. 

§45. 

In chapter II the author sets out his axioms. 
According to axiom I it shall always "be decided" whether 
M ß N (which means N is an element of M) holds or not. 
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Of course, "be decided" is an application of the law of the 
excluded middle; it is not required that we can always come to the 
decision ourselves. 

It has been explained in §16 above, why ß rather than its 
converse was taken as the basic relation. 

According to axiom II, M and N are to be identical 
whenever all sets essential in M (this means elements of 
M, elements of elements of M, etc.) can be associated 
with the sets essential in iV in a one-to-one and ß-
relation preserving fashion. 

That the elements of M must be associated with the elements of 
N, can very well be considered as self-evident here. 

§46. 

Axiom III is an axiom of completeness; it states that 
the domain of sets under consideration shall be maximal. 
It appears, however, to be clear that every domain which 
satisfies axioms I and II must be capable of extension, 
unless one wants to prohibit the formation of new things, 
for example, if one wants to prohibit the aggregates 
formed out of things of the domain from being regarded 
as new things, which appears to be senseless (see Baer 
[1928a] and Fraenkel [1928a]). 

It has already been indicated here the value that can be attached 
to the remarks of Baer [1928a] and the review of Fraenkel [1928a]. It 
appears, however, as though the axiom of completeness presents 
particular difficulties. Let us turn to it once again. 

For every natural number there exists a greater natural number 
so that in counting one can always say "I am not finished". More 
exactly, whatever the last number one has not reached the end. In 
spite of this it is not permissible to forbid one from speaking of all 
natural numbers, that is, of all that there are, or of all that there can 
consistently be. Such a prohibition would really be unfounded and 
therefore "senseless". We do not have to count up to a number for it 
to exist; that would be a very unfair requirement. 

It is precisely the same with sets. From any ordinary set 
whatever, for instance from the empty set, one can always proceed to 
form further sets so that also here one apparently "never comes to an 
end". In spite of this no one can be prohibited from speaking of all 
pure sets, that is of all that there are, of all that exist consistently. 
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Such a prohibition would be equally unfounded and therefore 
"senseless". 

Pure sets are indeed only a generalization of the natural 
numbers (see §35). Whereas the latter always have only one 
predecessor, a set possesses arbitrarily many "predecessors", namely 
its elements. That is in principle the only difference. 

A "set" is always to be understood here as a "pure set"; the 
elements of a pure set are only sets. These sets are, just as are the 
natural numbers, only ideal objects which stand in a certain relation 
to one another. 

§47. The domain of all sets can no more be extended than the 
natura l numbers can; consequently it does satisfy the axiom of 
completeness. 

In addition to all natural numbers there cannot still be "formed" 
or "constructed" still one "new natural number"; the concept would 
be contradictory and the formation of impossible, contradictory 
"things", is self-evidently prohibited because it simply is not feasible! 

In exactly the same way one cannot "form" or "construct" over 
ancl above all sets a "new set"; this would also be a contradictory 
concept. The formation of impossible, that is contradictory "things", 
is self-evidently prohibited also. 

If to each natural number a successor can be "formed", why 
cannot one also form a successor to all natural numbers? Because it 
constitutes a contradiction! One can certainly think of a "new thing" 
and decide that it might follow all natural numbers; one could also, if 
one wants to, describe it as an ordinal number and symbolize it by "co 
". However, it is not a natural number. A natural number which is 
the successor to all natural numbers does not existl 

The formation of new things is thus not arbitrarily forbidden, but 
it is only possible when there are still new things, that is, when no 
contradiction arises in the "formation". It is not, permitted, however, 
to regard a new thing as one of the old things; that is a contradiction! 

So it is not forbidden to view the aggregates formed from things 
of the domain as new things, as long as one does not say that these 
"new things" are old things, that is, to say that they are sets. 

If the system of all sets which do not contain themselves "is 
regarded as a new thing", then this "new thing" is a class or a system 
and not a set', otherwise it would certainly not be a "new" thing. This 
class is just as little a set as is the ordinal number co a natural 
number. The domain of all sets cannot be extended by adding new 
sets; it a l ready is maximal. 
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§48. The domain of all rational numbers can be extended to the 
domain of all real numbers by describing certain classes of rational 
numbers as real numbers. To every rational number there 
corresponds a unique real number; conversely, however, there exist 
real numbers to which no rational number corresponds. These 
cannot be called rational numbers; otherwise contradictions will 
occur. 

In exaetly the same way, the domain of all sets cannot be 
extended to include the domain of all classes of sets. To each set 
there corresponds a unique class of sets, namely the class of its 
elements. Conversely, however, there are classes of sets which do not 
correspond to a Single set; contradictions arise if they are designated 
as sets. An example of this is the class of all sets that do not contain 
themselves. 

The irrational numbers distinguish themselves from the rational 
numbers by the fact that they cannot be represented as the quotient 
of two integral rational numbers. Similarly, the classes to which no 
set corresponds distinguish themselves from sets by the fact that 
they cannot be represented by the unique relation ß. Sets are 
determined solely by means of the relation ß. In order to obtain a 
system or class of sets it is first necessary to have the sets, that is, to 
have the relation ß. One could then produce a new relation y which 
speeifies the membership of sets in a class. The relation y has no 
meaning without the relation ß. Only in special cases could it be 
replaced by the relation ß, namely, when the class forms a set. 
Similarly a real number, too, as a class of rational numbers, can be 
replaced by a rational number only in special cases; with irrational 
numbers this does not work. 

The axiom of completeness is not the least invalidated by the fact 
that the domain of classes extends beyond the sets. The axiom of 
completeness refers only to sets, that is to those things given by the 
pr imi t ive re la t ion b (see §32). A larger domain of sets does not existl 

§49. [Skolem continues.] 

Further, it is clear that the requirement that the 
system under consideration be the largest which satisfies 
I and II can only have an absolute meaning if the totality 
of all systems is already uniquely determined by other 
means; but then the problem as to whether there occurs 
a largest system within this totality would have to be 
solved first of all. 
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The totality of all systems which satisfy axioms I and II is 
actually determined by means of these axioms; it constitutes all that 
there are, that is, all that are consistently possible. 

The problem as to whether there is a largest system is solvecl by 
showing that these systems can be united into a largest, by 
identifying isomorphic sets of different systems. This was carried out 
in §9 and §11 of "On the Foundations of Set Theory, Part I" [1926b], 

§50. 

In a more detailed discussion of axiom III in § 10 the 
author says that a set exists whenever the assumption of 
its existence does not lead to a contradiction with I and 
II. It appears, however, to the present reviewer to be 
quite illogical to establish the existence of things by such 
a definition within a theory where the things are not 
isolated logical structures but stand in the most manifold 
relations to one another. 

That a set M, defined in any way whatever, "exists" means in 
this context, exactly as was stated in §10, that there exists in the 
system E of all sets one set which satisfies the definition. The 
supposition that the existence of M does not contradict the first two 
axioms means, as was also stated here, that there is a system 
satisfying the first two axioms containing a set M that satisfies the 
definition. 

If no such system were to exist, then the assumption that there is 
such a set would already contradict the first two axioms. If, however, 
one such system does exist, then the set M must also belong to the 
total system since this, as the union of all systems which satisfy I 
and II, must also contain the particular system, and with it also the 
set M. This is definitely not "illogical". 

Sets stand "in the most manifold relations to one another" in just 
the same way as do, for instance, the real numbers. In defining a 
fixed real number, one does not need to know these relations; it 
suffices that the definition in itself be correct. That is, it 
unambiguously and uniquely determines a real number. It is exactly 
the same with sets. 

Sets can be considered as "isolated, logical structures" just as 
well as the real numbers, or, what is more to the point, just as well 
as the natural numbers. 

A real number can be defined by means of a fixed system of 
rational numbers. Similarly a set can be defined by means of the 
system of its elements together with the sets essential in them. Not 
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every system of rational numbers defines a real number: Not every 
system of sets defines a set. Certain conditions must still be 
satisfied; in the latter case there is only one condition: that the 
existence of such a set does not contradict axioms I and II. 

§51. 

If the assumption of the existence of M and the non-
existence of N gives no contradiction and also that of the 
existence of N with the non-existence of M, while the 
assumption of the existence of M as well as N gives a 
contradiction, what should really exist? How would it 
stand with the non-ambiguity of the theory? 

How could something like this be possible? How could the 
existence of one set be dependent upon the non-existence of another 
set? The existence of a set is an absolute, and not a conditional, 
property. If a set is defined in a definite way, for instance by 
specifying its elements, then the assumption of its existence either 
stands in contradiction to axioms I and II or it does not. Nothing eise 
is possible! 

If a set exists, then of course the sets essential in it must exist; it 
is of no concern what other sets there may be. 

It is not maintained that in every case we must know or be able 
to decide whether a well-defined set exists or not, nor do we know 
whether every well-defined real number is rational or irrational. 

It can happen that a system which satisfies axioms I and II 
contains the set M and not the set N, another may contain N and not 
M. When we identify isomorphic sets, the two systems can be united 
to yield a system which still satisfies the axioms and contains both M 
and N. No contradictions can arise from the identification of 
isomorphic sets; there are no grounds for not identifying them. 

Therefore, if a set M and a set N separately exist in an absolute 
sense, then both of them exist! 

For these reasons the uniqueness and absence of ambiguity of 
the theory is also assured. 

§52. 

And what moreover does "contradiction" mean in 
Finsler's theory? According to the explanation in the 
introduction a "contradiction" does not need to be a 
"demonstrable contradiction". A more exact definition is 
then, however, lacking. 
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Why should "contradiction" mean something special in my 
theory? The word "contradiction" means exactly what it implies and 
what it has always meant in classical mathematics. A contradiction 
need be demonstrable just as little as a murder needs to be provable. 

A special definition would be superfluous here; a merely formal 
definition would be completely out of context. We refer to what has 
been said in §12. 

A real number is irrational if and only if the assumption that it is 
rational contains a contradiction. In exactly the same way a class of 
sets does not form a set if and only if the assumption that there is a 
corresponding set contains a contradiction. 

In both cases it is not necessary that we can demonsträte the 
contradiction. The law of the excluded middle holds; the assumption 
is either contradictory or it is not. 

If the supposition that a certain positive real number is rational 
contains no contradiction, then there exist two natural numbers 
whose quotient is equal to this number, whether we can find them or 
not. If there were no such numbers then the assumption would be 
contradictory, because it would contradict the facts. 

If the supposition that a certain class of sets forms a set contains 
no contradiction then there exists a set which contains exactly the 
sets of this class. Only sets belong to the total system £; this is, 
therefore, uniquely and consistently determined. 

The consistency of geometry rests upon that of arithmetic, 
arithmetic rests on set theory, set theory is based on logic. Logic is 
already consistent; otherwise it would not be logic. 

It is clear that this is always absolute consistency and not merely 
formal consistency; similarly the logic is absolute logic and not only 
formal logic. 

§53. [Returning to Skolem] 

In §9 the author asserts that quite unrestricted 
unions and intersections of systems of sets can be 
formed. Here, he has no scruples about the problem 
relating to non-predicative definitions so that he does not 
find it necessary to make distinctions between types. 

Already in §4 of "On the Foundations of Set Theory, Part I" 
[1926b] it was observed: "From this axiomatic point of view sets are 
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things in themselves rather than collections; it will soon become 
apparent that we can collect sets together without risking the danger 
of circular constructions." This means that unrestricted unions and 
intersections of systems can be formed. A set belongs to the union of 
given systems if it belongs to at least one of them; it belongs to their 
intersection if it belongs to all of them. That is quite unambiguous. 

The distinction between sets and systems of sets can, if one 
wants, be viewed as a distinction between levels. The distinction 
between sets and classes is all that is required here. 

Systems must always be well-defined and consistent; whether 
this can be achieved with non-predicative definitions need not 
concern us here. One must examine special definitions case by case. 
A system of sets is given whenever it is unambiguously determined 
whether each set belongs to the system or not. 

An example of a non-predicative definition given in "On the 
Foundations of Set Theory, Part I" [1926b, §15] will bc discusscd in 
greater detail under §62. 

§54. [Skolem next turns to the concept of circularity.] 

In chapter 8, which deals with the formation of sets, 
the concepts "circle-free" and "circular" are introduced. A 
set M is said to be circle-free whenever it together with 
all sets essential in it are independent of the concept 
"circle-free", which means that the definition of M 
always yields the same sets irrespective of which sets are 
characterized as circle-free. 

Prior to this we had already excluded those sets in which a set 
which is essential in itself is essential, that is, all sets which are 
already "crudely" circular, including those sets that contain 
themselves. 

Strictly speaking Skolem's review ought to read: " [...] are 
independent, which means can be so defined that the definition 
always yields the same set irrespective of which sets are 
characterized as circle-free". A circle-free set can also be defined in a 
circular way. In addition, a set in which a circular set is essential is 
circular, even if the set as a whole is independent of the concept 
"circle-free". 

Here it is extraordinary that the concept "circle-free" 
should have no connection with the original (primitive or 
fundamental) relation ß. 
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The concept "circle-free" relates to sets, and these are determined 
by the primitive relation ß. In as much as this is so there is certainly 
a connection with this relation. 

§55. The concept "circle-free" is of the greatest importance as 
will be specially shown in §61. It may be misunderstood by those who 
do not see that one can speak without contradiction of all sets. A few 
comments and examples will nevertheless be given. 

Call a set "cyclic" if some set essential in it is essential in itself. 
Exclude all cyclic sets from consideration. One of the remaining sets 
is circle-free if it and everything essential in it is definable without 
using the concept circle-free. The empty set is circle-free, since it can 
be defined as a "set without elements". Similarly the unit set, which 
contains only the empty set, is circle-free. Continuing in this way one 
can form many more circle-free sets. These can be called 
"unproblematic" sets. 

It is not possible, however, to simply consider all non-cyclic sets 
as circle-free. This would not serve to eliminate the paradoxes which 
rest on concealed circles. 

A "set of all non-cyclic sets" cannot exist: If it were not cyclic, 
then it would have to contain itself and therefore it would be cyclic. 
Should it be cyclic on the other hand, then a set essential in itself 
would have to be essential in it, which is likewise impossible. 

Genuinely circle-free sets, in whose definition no hidden circle is 
contained, certainly should be capable of being collected together into 
a "new" set. What would there be to prevent this? A circle would 
cause an obstruction. Were the circle to appear in the membership 
relation, then the "new" set would have to contain itself and would be 
an "old" set. 

Such a circle must necessarily be contained in the definition of 
the set being sought, as its elements are all circle-free sets. But then 
the new set, if it exists, could not be considered circle-free; it would 
have to be circular. As a circular set it is, however, really a new set; 
it could not belong to the old, circle-free sets. Thus, if a well defined 
set of circle-free sets has only circular definitions then it is circular. 
But nothing need stand in the way of its existence as a circular set. 
In that event the circle is satisfiable. If, however, a set of circle-free 
sets can be defined in a circle-free fashion, then it is circle-free. 

In particular, the "set of all circle-free sets" is a circular set; 
otherwise it would have to contain itself. This is a simple example of 
a circular set which is not "crudely" circular. The concept "circle-free" 
really does occur in its definition. 

One might think that this set, as a "set of all sets whose 
definitions are free of concealed circles" could also be defined 
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explicitly, that is, in a circle-free way. In actual fact, however, this 
definition also contains a concealed circle, in that it refers to 
concealed circles. Similarly, as everyone knows, it is not possible to 
think about the absence of white elephants without thinking about 
white elephants. 

§56. A set of circle-free sets is therefore circular whenever its 
definition necessarily contains the concept "circle-free", which can 
only be defined in a circular way; circumlocutions involving this 
concept would have to be replaced by the concept itself. If the set is 
circle-free, then it must be definable without reference to this 
concept, that is, independently of it. It is apparent that this condition 
suffices to ensure that a set can be considered circle-free. 

It should not be construed from this that we can always define 
such a set without the use of a circle. Even with the set of all natural 
numbers, or any infinite set, this is not the case, since we cannot 
enumerate all the elements separately. A circle-free set can, in spite 
of this, be thought of as being given by a mere presentation of its 
elements, without thereby giving rise to a logical contradiction. With 
circular sets whose elements are circle-free this is not possible, 
because here the concept "circle-free" must necessarily occur in the 
definition. 

That there exist systems of sets which cannot be given by the 
mere presentation of their sets, is also shown by the system of all 
sets. Here the definition necessarily must contain the concept "all", 
otherwise there would be no reason why the system could not be 
extended. Compare this with §60. 

§57. It remains to be asked how one can recognize that the 
concept "circle-free" necessarily must occur in the definition of a set. 
A set could be circular even if all of its elements are circle-free. The 
concept "circle-free" might only appear to be necessary. For example, 
the empty set, which possesses neither a circle-free nor a circular 
element, is circle-free. 

In order to decide whether a function f{x) actually, or only 
apparently, contains the variable x, which could be fixed by the 
relation £ = f(x), one varies x in order to see whether f(x) always has 
the same value or not. In the latter case the independence of the 
function f(x) from the value x is assured. 

In a similar way one can decide whether the definition of a set 
really or only apparently contains the concept "circle-free": One 
allows this concept to uary and then checks whether or not on the 
basis of the definition it is the same set or not. If the set changes, the 
dependence is assured. 
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Varying the concept is accomplished as follows: One designates 
arbitrary sets as circle-free and the others as circular, even if this 
does not coincide with the final determination. 

If no set is designated as circle-free, then the "set of all circle-free 
sets" is the empty set. If only the empty set is designated as circle-
free, then the set of all circle-free sets is the unit set, which is 
something different. This shows that the definition given is actually 
dependent upon the concept "circle-free". 

This test can thus be carried out even when the final 
determination of the concept is still completely unknown. 

If the definition of a set is dependent upon the concept "circle-
free", then the set is still not necessarily circular; there could exist 
another definition for the same set which does not contain this 
concept. Thus the "set of all circle-free empty sets" is the unit set and 
is therefore circle-free, although the definition, as given, is not 
independent of the concept "circle-free". Were all sets to be 
designated as circular, then this definition gives the empty set; that 
is something different. 

Thus, as given in "On the Foundations of Set Theory, Part I" 
[1926b, §13] a set shall be said to be "independent of the concept 
'circle-free'" whenever it can be so defined that the definition always 
yields the same set, irrespective of which sets are designated as 
circle-free. 

A given non-circular set is then circle-free if not only it, but also 
every set essential in it, is independent of the concept "circle-free". 

That this definition is all right in spite of its circularity was 
shown in §14 of "On the Foundations". The present discussion serves 
only as an elucidation. 

§58. Skolem now continues. 

What is more, the double application of the concept 
"circle-free", once arbitrarily varied in order to 
investigate the effect on the definition, and once constant 
or definitive (final), is of course well suited to leading 
into confusion. In order to make matters clear one would 
have to State explicitly on the one hand "varying circle-
free" and on the other "definitively circle-free". If, 
however, one does this, then it appears that one comes to 
other conclusions than those of the author. 

There is a difference between designating a set definitively as 
circle-free, or whether one designates it "definitively circle-free". If 
such things are confounded then of course confusion will arise. 
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The sets designated definitively circle-free are circle-free sets 
whereas the provisional designation can be varied. 

In order to derive a value x from a relation of the form x - f(x), 
one can at first vary x until one finds a value which satisfies the 
relation; this latter is then the definitive value of x. 

If, however, in order to avoid the circle, or "in order to make 
matters clear" the "x on the right hand side" and the "x occurring on 
the left hand side" are denoted by y and z respectively, then a 
relation y = f(z) is obtained, from which, in general, neither y nor z 
can be determined. Similarly it is not permissible to replace "circle-
free" in one instance by "varying circle-free" and in another by 
"definitively circle-free"; otherwise one might obtain some other 
result or none at all. 

§59. 

Proposition 11 states that the class (totality) of all 
circle-free sets is a circular set. 

More exactly, proposition 11 [1926b, §15] states that the set of all 
circle-free sets exists and is circular; this means that the 
corresponding class forms a circular set. 

It is clear, however, that the class (totality) of the 
ultimately circle-free sets must again be an ultimately 
circle-free set, in so far as it is a set at all; for the 
arbitrarily varied, provisional distribution of the labels 
"circle-free" and "circular" can indeed have no bearing on 
the existence of the ultimately circle-free set. 

It is self-evident that the provisional distribution of labels can 
have no bearing upon the existence of any set whatever; it can only 
serve to test whether a well defined set is circle-free or circular. 

It is difficult to say what Skolem meant with his mode of 
expression. 

Perhaps he meant the following: The ultimately circle-free sets 
are independent of the concept "circle-free"; the arbitrarily varied 
provisional distribution of the labels therefore plays no role whatever 
in their definition; they are unambiguously determined without this. 
Now this does, indeed, hold for every, separate circle-free set. Their 
totality is uniquely determined; but the unique determination does 
not imply that it is circle-free. The class of circle-free sets as a whole 
cannot be defined without reference to the concept "circle-free"; the 
definition is dependent upon this concept and is therefore circular. 
If, for a test, the labels "circle-free" and "circular" are distributed 
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differently, then the definition which depends upon these labels 
describing the "totality of all circle-free sets" will yield different 
classes, even if the ultimate class is uniquely determined. 

Similarly, the definition of the set of all circle-free sets is 
dependent upon the concept "circle-free", and this set is therefore 
circular; from the test one obtains different sets, but ultimately only 
one unique set. 

It does not help at all to speak of the "class of the ultimately 
circle-free sets" instead of the class of circle-free sets. The "ultimately 
circle-free sets" are the circle-free sets and nothing eise; one has 
exactly the same collection. 

If, however, one wants to retain the expression "ultimately circle-
free" and with it test whether ultimately circle-free sets together 
form a circle-free set, then one has to vary this concept. One 
therefore designates some sets as "ultimately circle-free", which in 
reality are not, and conversely, just as one does when designating 
sets as circle-free. The result is again the same. What comes into 
question here is not how the concept is named but how it is defined. 
This does not of course exclude the fact that some nomenclature is 
bad. 

If, however, the expression "ultimately circle-free" means that 
this concept must not be varied and also is not to be equated with the 
"circle-free" already defined by means of the Variation, then it must 
be asked, whether it is to be defined at all. Other definitions can of 
course lead to other results. If Skolem defines the concept in such a 
way that the aggregate of "ultimately circle-free sets", provided it is a 
set, would be circle-free, then this would have to contain itself ancl, 
being a non-circular set, could not exist. This, however, shows only 
that such a definition is utterly useless, 

§60. It may be conspicuous that there are classes of sets which 
can only be defined with reference to a fixed logical concept. Now 
that is a fact with which one must comply. 

This fact is indeed unusual, but it does not occur only in 
connection with the concept "circle-free"; it is also to be found in the 
concept "all" (see §56). 

If the concept of a set is unambiguously defined, then so is that of 
the class of all sets; to reject it as such has no justification. 

The class of all sets cannot be defined, however, without 
reference to the concept "all"; that is, not in such a way that the sets 
can be thought of as being produced singly, without having used this 
concept. Otherwise new sets coulcl still be found without giving rise 
to a contradiction; and therefore one would never have all sets. If, 
however, one speaks of the class of all sets and so uses the concept 
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"all", then there cannot exist any more new sets, for the existence of 
one would constitute a direct contradiction. 

Again, it is also the concept and not its name which matters. The 
totality of the sets which do not contain themselves is the totality of 
all such sets; the concept "all" is inherent already in the word 
"totality". In the axiomatic representation, the concept "all" lies in 
the axiom of completeness. 

§61. The concept "all" is a well known logical concept which is of 
the greatest significance for mathematics. If one were not allowed to 
speak of all natural numbers, of all real numbers, of all sets, then 
one could never have clarity in mathematics. 

The concept "infinite" is also a well known concept, which is of 
the greatest importance, and which receives its essential, strictly 
logical meaning in mathematics. Restriction to the finite, in 
particular to finite sets, would exclude the greater part of 
mathematics. 

The concept "circle-free" is similarly a logical concept, which 
relates in particular to sets and so to the whole of mathematics; it is 
of the greatest significance for the foundation of mathematics, 
especially the infinite in mathematics. Without this concept, one 
would not succeed in securing the existence of the infinite and of the 
higher cardinal numbers. 

Now, this is of course a new logical concept. Is it not allowed that 
something really new can turn up in logic, except for formal 
methods, which have surely been elaboratecl in the richest measure? 
Logic itself is invariant; but our knowledge of logic can change. It is 
certainly clear that one must have something new when one sees 
that the methods hitherto available no longer suffice to reach the 
infinite. What one truly needs is not something arbitrarily or 
artificially constructed but something which emerges from the 
nature of the subject and which suffices for it. 

A real access to the infinite: does that mean nothing? Why should 
one struggle against it? 

The correctness and utility of a logical concept are independent 
of whether or not some people fail to understand it, or do not want to 
understand it. A tenable objection against the concept "circle-free" 
has, to my knowledge, never been raised. 

As soon as one realizes what the essential difference is between 
the usual sets, as they are continually used in analysis and 
geometry, and the paradoxical sets or classes of sets (especially the 
classes to which no set corresponds) then one is necessarily lead to 
the concept "circle-free". Why can the set of all natural numbers be 
formed, but not the set of all ordinal numbers? The reason is that the 
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The finite ordinal numbers are circle-free; the set of the finite ordinal 
numbers can be formed and is likewise circle-free, but not finite. The 
set of all countable ordinal numbers can be formed and is circle-free 
but not countable. There are still many more circle-free ordinal 
numbers. The set of all circle-free ordinal numbers also exists, but it 
is not circle-free. Beyond this there are still further circular ordinal 
numbers. If there were a set of all ordinal numbers that exist, then it 
would have to be non-existent and thus could not be formed. It is not 
surprising that the set of all ordinal numbers, circle-free and circular 
together, cannot be formed because of the circular ones. 

If someone believes that this difference between "usual" and 
"paradoxical" sets can be defined or determined in some other way 
without excluding useful sets, let him try. It is, however, not enough 
simply to leave this difference as it is without a definition. Well 
known assertions, such as the non-existence of a greatest cardinal 
number, hold for the circle-free sets, but not for arbitrary sets and 
must therefore be formulated accordingly. It is, however, not 
sufficient to declare a few examples of sets non-paradoxical and 
therefore admissible, especially if one does not at all know whether 
they really are. 

As long as one cannot show that there are infinitely many things, 
every infinite set must appear as paradoxical. If, however, these are 
excluded entirely, then there is very, very little left. 

In "On the Foundations of Set Theory, Part I" [1926b, §18] it was 
shown that the set of all circle-free sets is an infinite set, that there 
thus exist infinite sets, and therefore also infinitely many things. 

§62. 

In the definition of the "well-defined" class in §15 the 
expression "inherent contradiction" plays an essential 
role. Does this really mean anything? 

The definition referred to reads as follows: A well-defined class is 
understood to be one which is defined completely, unambiguously, 
and without inner contradictions." 

Two examples were given in §15 of "On the Foundations" to 
prepare for this definition and will be repeated here: "For example, 
one may designate the class of all sets which do not contain 
themselves as well-defined even though it does not form a set. In 
contrast, the class of all those elements of the unit set which are 
identical to the set which contain the elements of this class is 
obviously not a well-defined class, even though only the one circle-
free element of the unit set appears in the definition." 
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The first example shows that "paradoxical" classes are to be seen 
as being well-defined classes, only so far as they are unambiguously 
and consistently defined. 

From axiom I it follows that for each set M it is unambiguously 
decided whether it contains itself or not, that is, whether M ß M 
holds or not. In the system of all sets, therefore, the class of all sets 
which do not contain themselves is uniquely and consistently 
determined; it consists exactly of those sets M for which M ß M does 
not hold. This yields a well-defined class. 

One could only obtain a contradiction by requiring that this class 
forms a set; that was not required in Part I. On the contrary, this 
shows that not every well-defined class of sets forms a set. 

The second example was apparently too difficult for the reviewer; 
otherwise he would have remarked that the definition contains an 
inner contradiction. 

Purely externally, according to the mere form of the definition, 
the contradiction is not evident. It is stated which sets belong to the 
class and which do not; by these means this class, which could be 
empty, appears to be determined. 

The definition of this class contains, however, a reference to the 
class itself, which leads in this case to a non-satisfiable circle and 
ultimately to an "inner contradiction". There is no class which 
satisfies the given definition. 

The contradiction emerges in the following way: The unit set 
contains the empty set as its sole element. A class of elements of the 
unit set can therefore either be empty or consist of the empty set. 
The set whose elements are the numbers of this class is thus either 
the empty set or the unit set. If the class being sought were empty, 
then it would, according to the definition, have to contain the empty 
set, since this is an element of the unit set. If it consisted of the 
empty set, however, then it would have to be empty because the unit 
set is not an element of the unit set. Both cases are thus impossible; 
the definition really does contain a contradiction. 

The class being sought in this case is not a well-defined class. If 
it were empty, it would have to consist of the empty set; and if it 
consists of the empty set, then it would have to be empty. The empty 
set is not an "empty class". 

This example also shows clearly that such contradictions are in 
no way bound up with the concept of the infinite, or even that of the 
non-denumerable, but can occur already with very simple finite sets 
and classes, as soon as one has to do with circular, that is "non-
predicative", definitions. In order to exclude paradoxes it does not 
suffice to restrict considerations to finite sets; on the contrary it is 
necessary to exclude contradictory definitions. 
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The expression "inner contradiction" is moreover to be found 
already in the paper [1926a, §2], which immediately precedes "On 
the Foundations of Set Theory, Part I" but Skolem, as has already 
been remarked, has obviously not paid attention to it. It was shown 
there, that there are formally consistent axiom systems, lacking 
formally decidable contradictions, but which have recognizable 
contradictions anyway. An "inner contradiction" may adhere to such 
systems. On this point too, there was a clear reference in "On the 
Foundations" [1926b, Introduction], 

It is self-evident that in the definition of a fixed class no external, 
directly visible, contradiction can be found; the class would otherwise 
not be completely and uniquely defined. With regarcl to implicit or 
"non-predicative" definitions the possible occurrences of inner 
contradictions must, however, be specially investigated, because here 
the Impression can be given that the class being sought is well-
defined. 

Otherwise, however, the distinction between inner and outward 
contradictions is not of particular importance. This also follows from 
the additional remark that "in the place of Zermelo's concept 
'definite' we shall have to put the concept well-defined or consistent." 
[1926b, §15] Further it is said: "A well-defined class of sets is the 
same as saying that the class forms a system (§7)." In §7 of [1926b] it 
is said of the subsystems of E: "Any such subsystem is then well-
defined whenever, for each set, it is uniquely decided whether it 
belongs to the subsystem or not." 

What has to be understood by a "well-defined class" is presented 
in a sufficiently clear way. 

§63. In [1908, 263] Zermelo calls a proposition definite whenever 
"the basic relations of the domain decide, by virtue of the axioms and 
generally valid laws of logic, on the validity or invalidity of the 
proposition without arbitrariness." 

Incidentally this definition was rejected as "too fuzzy", A 
rejection is justified in so far as the definition has no meaning, when 
one does not know whether a contradiction may follow from the 
axioms. This is, however, not shown in Zermelo's case. 

Mostly the difficulty is sought in the expression "generally valid 
laws of logic". As long as one burdens logic with antinomies this is 
comprehensible. Instead of Clearing up the antinomies and 
recognizing an absolute logic which is necessarily consistent, special 
"logical laws" have been sought whose consistency is assumed; an 
attempt has even been made to prove consistency in particular cases, 
but without absolute logic such proofs are certainly very precarious. 
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The concept "definite" then was replaced by a narrow concept 
that allows only countably many subsets to be formed from an 
infinite set. This collection then is metaphorically characterized as 
"non-denumerable". 

Thus, the whole "formal set theory" can be "realized" in a 
countable domain, which therefore contains an insignificant quantity 
of the real sets which have higher powers. Even for this minute 
fragment it is still not shown that it is consistent. 

Why does one not admit all subsets of a set, as long as they are 
consistently defined? Already the subsets of the natural numbers 
yield an actually uncountable system which contains infinitely much 
more than the whole of the contrived pseudo-theory. 

If, however, one takes on such restrictions, how does it stand 
with the satisfiability of Hilbert's axiom of completeness for 
geometry? Is Hilbert, because of this, now suddenly incorrect? How 
could one then speak of plane or three dimensional Euclidean 
geometry without adding each time which of the arbitrarily 
restrictecl ones is meant; otherwise there is ambiguity. 

§64. [Skolem continues:] 

In §17 the axiom of choice is "proved" by invoking 
adoptability without contradiction. Thus every thing goes 
through very easily. 

In fact, a safe is much more easily opened by using the right key 
than by prying with a crow bar. 

I really have not set out to be easy on myself, otherwise success 
would not have been possible. For all that, I have taken the trouble 
to first resolve the antinomies correctly and then build up the whole 
of set theory, that is, the theory of pure sets. 

If one knows exaetly where Opposition is waiting, one can dispose 
of it there and need not fear further trouble in other places. 

In §17 of [1926b] it is shown that the formation of a set using the 
axiom of choice within the domain of circle-free sets does not entail a 
circle and therefore, under the given assumption, is always possible. 
Zermelo's axiom of choice which postulates the existence of a choice 
set is thus justified here. In the domain of all sets it fails, however, 
as can be seen from an example (see Finsler [1941b]), since the 
elements "chosen" need not always form a set. 
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§65. 

Finsler's work is of course a well meant attempt to 
save classical mathematics in its complete extent. One 
has got to say, however, that this attempt is misguided. 

The final remark is mistaken. 
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Introduction 

The Finsler theory was intended as a way of defending classical 
mathematics from the urge to formalize it in reaction to the 
paradoxes of logic and set theory. The combinatorial fertility of this 
set theory seems at first to be one of its incidental products; but 
Finsler also believed that sets are generalized numbers and that the 
unsolved questions of set theory might be approached from that 
direction. So perhaps it is natural that his ideas should be 
stimulating from a combinatorial point of view. 

There are two short papers of Finsler included here. They concern 
totally finite sets. Since totally finite sets are well-founded, we have 
also included an introduction to the rieh combinatorical problems to 
be found among the non-well-founded sets. As a result this 
introduction to set combinatorics is of greater length than the two 
papers of Finsler that have been included. First of all, let us see 
what is actually in the two papers translated here. 

The two papers in this section concern totally finite sets. 
Everything here is exactly the same whether it is understood to take 
place in Finsler set theory, ZF, or any set theory, in fact. 

The totally finite sets are exactly the sets that are usually called 
"hereditarily finite sets". The reason that two different names are 
required is that the usual definition of hereditarily finite sets may 
not give what is intended when the axiom of foundation is not 
available. Hereditarily finite sets are those sets that are finite, 
whose members are finite, whose member's members are finite, and 
so on. It could happen that the words "and so on", just used to 
describe the hereditarily finite sets, mask an infinite process. 
Without the axiom of foundation an hereditarily finite set could have 
a countably infinite transitive closure. For this reason we should 
like to encourage Finsler's use of the term totally finite to describe 
the sets whose transitive closure is finite. In ZF, totally finite sets 
and hereditarily finite sets are the same. Additional cletails can be 
found in Booth [1990], 

In Totally Finite Sets Finsler defines the produet and sum of two 
sets. The definition is an extension of the produet and sum of order 
types developed by Cantor and Hausdorff. 

There have been other extensions of arithmetic to partial 
orderings, by Garrett Birkhoff in [1937] and [1942] for instance, but 
none of the definitions known to us agree with the ones here. 
Nevertheless, one feels that these definitions are quite natural ones. 

The basic ideas for extending arithmetic to the totally finite sets is 
found in Totally Finite Sets. On the Goldbach Conjecture is a brief 
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note that is easy to follow after reading only part of Totally Finite 
Sets. It has no special importance, but the idea of a set-theoretic 
Goldbach conjecture delighted us and we have made it the final 
article in this collection. 

The knowledge of this set arithmetic was considerably advanced 
by Guerino Mazzola, [1969], [1972], [1973]. The first of these papers 
treats the arithmetic of sets in a somewhat different style than that 
of Finsler. The second paper, Mazzola [1972], solves a central 
problem left open in Finsler's work: Do the totally finite sets permit a 
unique factorization into primes? In [1973] Mazzola gave a 
characterization of the arithmetic on the hereditarily finite sets by 
using a projective property like those offree algebras. 

There has not been an attempt to apply similar arithmetic 
concepts to the non-well-founded sets. The very problem of 
classifying non-well-founded sets is a rieh field in itself. The 
following essay introduces the various combinatorial issues that arise 
in connection with non-well-founded sets. A reader who has not yet 
been stricken with an interest in non-well-founded sets can very well 
turn directly to Totally Finite Sets. 
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The Combinatorics of Non-well-founded Sets 

Even though non-well-founded sets appeared in Mirimanoff 
[1917a] the most significant early treatment was that of Finsler 
[1926b], Since then there have been studies of set theory without an 
axiom of foundation, but these have usually been relative consistency 
arguments that feil short of accepting non-well-founded sets 
themselves. The publication of Aczel [1988] marked a change in this 
respect: Aczel gave an anti-foundation axiom that replace the axiom 
of foundation. He also compared Finsler's axiom of identity to his 
anti-foundation axiom. 

The subject is now sufficiently clear that one can at least survey 
the elementary facts. Open questions he on all sides. 

First, let us see the few examples of non-well-founded sets given 
by Finsler who did not attempt to systematically classify them. His 
examples were scattered about in [1926b] as illustrations of points in 
the development of set theory. 

1. Finsler's Three Examples 

Four graphs of non-well-founded sets appeared in Finsler 
[1926b], although, as will be explained, these examples give more 
than just four sets. 

Example 1.1 (J-set) J = {J}. 

The letter "J" is a graphically suggestive name for this set 
because the set, like the letter, hooks back on itself. 

Example 1.2 (Fibonacci-Finsler sets) A = {A, B) , B = {A}. 

Later we will use the letter K to designate these and other closely 
related sets. The name "Fibonacci is used because of the close 
connection between these sets and the sequence of Fibonacci 
numbers. The sets A and B may be compared respectively to the 
mature and immature states of Fibonacci rabbits. A mature pair 
preceeds both a mature and immature pair in the following month, 
whereas an immature pair yields only a mature pair. This Single 
example 1.2 provides two sets that are defined simultaneously in a 
mutually dependent way. 
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The third example requires a preliminary definition. Regard the 
ordinal numbers as consisting of the set of lesser ordinals in the 
usual way: 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} and so on. The related 
sequence of sets 0, {0}, {{0}}, {{{0}}}, ..., is also in need of a name. Let 
us devote the letter N to this use. 

Definition 1.3 N0 = 0, Nn+1 = {Nn}. 

Example 1.4 (Finsler's ladder) Mn = {Nn, Mn+1}. 

In this third example there are infinitely many sets Mn defined 
simultaneously. 

Finsler's fourth set diagram (Figure 4, p. 126 of this volume) is 
also infinite. 

Besides these examples, Finsler provided two graphical devices 
for the study of non-well-founded sets: graphs and trees. 

2. Graphs and Trees 

The graph and the tree of a set are definable in terms of each 
other, and either of them can be used to recover the set itself. Both 
concepts depend on the transitive closure of a set. It is important, 
where non-well-founded sets are concerned, to distinguish between 
the transitive closure and the transitive hull. 

Definition 2.1 
(i) A set S is said to be essential in R if S is an element ofR, an 

element of an element ofR, an element of an element of an element of 
R, and so on to any finite level ofdepth within R. 

(ii) The collection of all sets S which are essential in R forms the 
transitive closure, T{R), ofR. 

(iii) If we adjoin the set R itself to its transitive closure, we obtain 
the transitive hull TH(R). In symbols TH(R) = T(R) u {R}. 

This distinction between transitive closure and transitive hull is 
not usually made in the set theoretic literature because in common 
circumstances only the transitive closure is required. But in the 
Finsler theory, unlike the usual set theories, sets may be members of 
themselves, so the distinction between the two notions becomes more 
important than usual. 

Now we are ready for the concept of the graph of a set. Actually 
the concept of a graph is more general than that of a set and is 
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logically identical to the concept of a relation. When the two notions, 
graph and relation are placed adjacent to each other, it is clear that 
they are the same. 

Definition 2.2 
(i) A graph is a collection of points G, called nodes, along with a 

collection ofarrows poiriting from some nodes to others. 

(ii) A relation is a set G of objects along with a collection of 
ordered pairs, ( a, b), of objects of G. 

That the two concepts are identical is manifest. There is a slight 
pecularity in the mathematical literature however. A long tradition, 
going back to Euler, treats graphs whose edges run in both 
directions; that is, it treats only Symmetrie relations. This less 
general notion is often called a "graph" and the concept needed here 
is called an "undirected graph". 

O 
® 

1 © 
2=10,1} 

Figure 6 

In Figure 6 the graphs of the first three finite ordinals 0, 1, 2 
appear along with N2 (definition 1.3). Turning to non-well-founded 
sets, the simplest one, example 1.1, is the J-set. Let us introduce a 
refinement to Finsler's graphical method and circle the node of the 
graph as shown at the right in Figure 7. 

The reason for this circling is that graphs 
will generally have many nodes: We would q j 
like to display which one actually represents 
the the set that is the object of our attention. ® 

As another illustration, example 1.2 above \_J 
actually gives two Fibonacci sets. The graphs 
of these two sets must be kept distinet even 
though they are defined together as relations. Figure 7 
To distinguish between them we indicate a root, 
as shown in Figure 8. When the node corresponding to A is the 
designated root, then we are interested in the set A, and likewise for 
the set B. 
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B <S> B 

AQ Aö 
Figure 8 

The distinguished node is said to be the root. 

Definition 2.3 A rooted graph is a graph on the set of nodes G for 
which one node, the root, is distinguished. 

Definition 2.4 The graph of a set R is a rooted graph on the nodes 
G = THiR) with R as its root. For any two sets A, B either essential in 
R or equal to R itself, that is A, B e TH(R), place an arrow from A to 
B exactly i f B e A. 

Now, let us turn to the trees associated with rooted graphs. 

Definition 2.5 
(i) A path in a graph is a sequence of nodes ( Dx, D2, ..., Dn> such 

that each node is connected to its successor in the sequence by an 
arrow in the graph. 

(ii) A rooted tree is a rooted graph G with a root R such that 
each node can be reached from R by a unique path. 

In other words, a tree cannot be disconnected since nodes must 
be accessible from the root, nor can it have loops since nodes must be 
uniquely accessible. 

It can easily be seen that each rooted, connected graph has an 
associated tree consisting of the paths through it. Before giving 
definitions it is best to examine some sample diagrams. Figure 9 
shows a rooted graph. Figure 10 shows the tree of paths to which it 
gives rise. This process is called "unfolding" by Aczel [1988]. 

In the case of the ordinal numbers, the first „ , 
three of which are shown in Figure 6, let us / 
simplify the path tree somewhat by labeling its / 
nodes only with the last term of the sequence that c — d 
is properly attached there. In other words, in the 
tree for the ordinal number 3 = {0, 1, 2}, which Figure 9 
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is given in Figure 11, there are four different nodes labeled "0". One 
of them is the path <3, 0) descending directly from 3 to its element 0. 
Another is (3, 1, 0) which goes from 3 to its element 1, and then on 
to l's element 0. There are two more paths out of 3 and ending at 0, 
which go by way of 2. 

Figure 10 

This simplified labeling, instead the füll path label of figure 10, 
will be used here in drawing trees of sets. Literally, however, 
definition 2.5 identitifies nodes in the unfolding tree with a path. 

<S> 3 

Figure 11 

Definition 2.6 The unfolding tree of a set R is the path tree of the 
graph of the set R. 

Roughly, speaking, Finsler [1926b] identified two sets if their 
graphs are isomorphic. In an alternate definition appearing in 
[1954] and described in [1964], he identitified sets whose graphs 
were compatible with each other. These two different methods of 
identifying sets are more fully described in section V of the 
introduction to the foundational section of this volume. 
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In [1988] Aczel independently used Finsler's second version, the 
more restrictive one, that all sets whose graphs are compatible 
should be identified. Aczel did not know that Finsler had already 
considered this criterion. In §22 of [1964] Finsler described this as a 
"higher" point of view for logical reasons, even though it produces 
fewer sets. We prefer Finsler's original, less restrictive criterion of 
set identity because we do not want to define sets out of existence 
without cause. 

In [1960] Scott identified sets whose unfolding trees are 
isomorphic. This criterion of set identity is intermediate in strength 
between the most liberal criterion of Finsler's first version of axiom 
II and the most restrictive criterion used by Aczel and by Finsler in 
his second version of axiom II. 

When we are concerned, as here, with combinatorial matters, it 
seems best to allow the widest variety of sets. If our interests are 
more purely logical, it may be better to restrict ourselves. The 
examples that follow shall illustrate this point of view. 

3. The Second Level 

Definition 3.1 The level of a set S is the cardinality of TH{S). 

No matter what criterion of set identity one may prefer, there are 
only two sets of the simplest kind, the sets of the first level. They are 
0 and J. 

The theorem that follows is a theorem of absolute set theory, 
which resembles naive set theory except that it is not naive; that is, 
vicious circles are not allowed though their existence is recognized. 
Circular definitions that can be consistently made are permitted. 
Technically speaking the proof is not completed because we have left 
open the criterion of set identity. We have described the criteria of 
Finsler, Scott, and Aczel but have not specified which is to be 
accepted. At the first level, however, these critera all have the same 
effect. 

Theorem 3.2 There are two sets of the first level. 

Proof. A Single object can either be related to itself or to nothing at 
all. This produces two possible relations on one object. By any 
criterion of set identity, the graphs of distinct sets cannot be 
isomorphic. So we must have two distinct, possible sets, 0 and J. 
Each of these graphs has a unique root. Neither graph is dependent 
on any other since they have no non-empty subgraphs. It follows 
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that both are consistently defined as sets, thus they actually exist as 
the sets 0 and J. This completes the proof. • 

A set of the second level has a graph of two nodes {a^, a2}. This 
graph has an adjacency matrix (e^) in which e-j = 1 when 
a\ e a2 and e^ = 0 when a1 g a2. This gives a convenient 
enumeration of relations on two elements by the integers 0, 1, ..., 15 
obtained by making (e^) correspond with 

eu 23 + e12 22 + e21 2 + e22. 

The permutation interchanging a1 and a2 induces internal 
automorphisms among the relations numbered 0, 6, 9, and 15, using 
the enumeration (<&). On the remaining relations it produces orbits 
of length two, pairing: 1 with 8, 2 with 4, 3 with 12, 5 with 10, 7 with 
14, and 11 with 13. This leaves ten isomorphism types that could 
possibly be sets. The next theorem reduces the stock of suitable 
graphs to five. 

Definition 3.3 A graph is extensional if it does not contain two 
distinct nodes having the same immediate descendents. 

Definition 3.4 A rooted graph is accessible if every node can be 
reached along a directed path from the root. 

Theorem 3.5 The graph of a set is rigid, accessible, and extensional. 

Proof. The graph of a set is clearly rooted by the set itself, and 
every node is accessible from the root. 

If the graph of R were not rigid, an automorphism would 
interchange two nodes P and Q. Since TH(P) and TH(Q) are 
subgraphs of TH(R), they would be isomorphic. Even the least strict 
criterion of set identity will identify sets with isomorphic graphs. So 
P and Q are the same set. Thus they cannot arise as distinct nodes 
in the graph of R; no such automorphism can exist. 

Finally, in order to see that the graph of a set is extensional, 
consider two nodes M and T having the same immediate 
descendents. These descendents must correspond to sets that are 
elements of M and T. So M and T must have the same elements. 
This means that the graphs of M and T are isomorphic. So by any 
criterion of set identity they are the same. Thus they could not give 
distinct nodes in the graph of R. This completes the theorem. • 
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® 

6 o 
Figure 12 

By these Standards we may dismiss the non-rigid relations, 
numbered 0, 6, 9, and 15, in the enumeration (•&). The graphs 0, 1, 
8, and 9 are disconnected, so they cannot be graphs of sets. One of 
the remaining six types of relation can be dismissed by the 
requirement of extensionality. The isomorphism type containing the 
relations numbered 5 and 10 in the enumeration can be given roots 
in two ways to produce the rooted graphs shown in Figure 12 

The left hand graph in Figure 12 is connected as a graph but 
does not meet the stronger accessibility requirement that there be a 
path from the root to each node. The right hand graph is accessible 
but not extensional. 

Four relations remain as possible graphs of sets. Three of them 
are accessible from only one of the two nodes. The remaining graph 
has two possible roots. These graphs are shown in Figure 13. 

/ \ 

ö 

At this point the criterion of set identity becomes important. By 
the Standards of Finsler [1926b], these graphs give five sets. By the 
Standards of Finsler [1954] or Aczel [1988] they provide only two. 

Definit ion 3.6 
(i) Let finslerin) be the number of sets of level n such that sets 

are identified only if their graphs are isomorphic. 
(ii) Let aczel(n) be the number of sets of level n such that sets are 

identified when it is consistent to do so. 

® o o 

o 
Figure 13 
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The previously given enumeration shows that finsler(2) < 5. By 
checking that these five sets are well-defined, independent of the 
definition of any sets except those of level one, and have elements 
that are proper sets of a lower level, we have established the 
following. 

Theorem 3.7 finsler(2) = 5. 

The leftmost of the five sets of Figure 13, is the ordinal 1 = {0}. 
Let us give names to the others. The second from the left, the set 
most resembling 1, will be 1*. We may think of 1*, 2*, 3*, ... as an 
infinite list of pseudo-ordinals. The definition is given here for finite 
levels only but it continues into the transfinite. 

Definition 3.8 0* = 0 cmd (n + 1)* = {0*, 1*, ..., /»*. (n + 1) *}. 

The third diagram from the left in figure 13 resembles the J-set; 
it will be called J j . 

Definition 3.9 J0 = J and Jn+1 = {J0, Jv ..., Jn, Jn+1}. 

Using the most strict Standards of set identity, in which sets that 
can be consistently identified are actually taken to be equal, the sets 
Jn are not new sets. To see this, label both nodes in the diagram for 
J \ (the third diagram from the left in Figure 13 ) with the letter "J". 
The resulting diagram does not contradict the definition of J . This 
test for strict set identity was introduced as an "anti-foundation 
axiom" by Aczel [1988], 

Criterion 3.10 (Aczel's test) There is a unique way to assign sets to 
a rooted, accessible graph so that the elements of a set are its 
immediaie descendents in the graph. 

Since we can assign "J" to each node consistently, the two nodes 
must be the set J, otherwise there would be more than one way to 
label the graph with sets. The remaining pair of sets of level two, the 
right hand diagram in Figure 13, are also equal to J by Aczel's test. 
So there are only two Aczel sets of the second level, 1 and 1*, the 
other diagrams are merely elaborate characterizations of J. 

Proposition 3.11 aczel{2) = 2. 

Returning to Finsler's more liberal concept of set identity, the 
right hand pair of sets of the second level, Figure 13, are the 
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Fibonacci sets given in example 1.2. These are also part of a series. 
These sets, however, unlike n* and Jn, have sets defined at level n 
that are all distinct from those at previous levels. 

There is a single Fibonacci set at the initial stage. Written, Kl
0, it 

is the same set as the J set J - {J}. The superscript shows that it is of 
the first level. 

To continue the Fibonacci process, the next stage, the pair in 
Figure 13, gives not one new set but two mutually dependent sets. 
Call them I\ 20 and K l These two sets can be written with braces as: 

Kl = { Kl Kl), Kl={K2
Q} 

These are the sets "A" and "B" of example 1.2. 
At the next stage there are three mutually dependent sets: 

Kl ={K3
0, Kl Kl) , Kl = {/<}, Kl = {<} 

A complication here is that none of these sets are identical with 
the ones defined at earlier levels, so superscripts have to be used to 
distinguish them from the previous ones. The definition continues in 
this way. At each stage all but one of the sets contain only a single 
element. 

Definition 3.12 Let Kn
0 = { Kn

0, K", ..., K^} and !<"+1 = {!<"} for 
0 < i < n - 1. 

The graphs of the K-sets are most easily drawn with curved 
arrows in Figure 14, where the diagram is given for the Fibonacci 
sets of the third level. 

It can easily be checked that the Finsler sets appearing in Figure 
9 all have non-isomorphic trees. This implies that they are sets in the 
sense of Scott too. In the next section a combinatorical tool, the layer 
sequence, will be introduced; it can be used as a necessary condition 
for trees to be isomorphic. 

Figure 14 
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4. Layer Sequences 

The layer sequence counts how many nodes lie at a given depth 
from the root of a tree. It provides a sufficient, but not necessary, 
condition for distinguishing between sets, and it connects pure set 
theory with enumerative combinatorics. The reader may skip this 
section entirely and continue with the survey of sets at the third 
level, beginning on page 228. 

Definition 4.1 
(i) The root of a tree will be said to be at layer 0. If a node is 

immediately beneath a node of layer k, it will be said to be at layer 
k+l. 

(ii) The layer sequence of a rooted tree is the sequence whose 
terms are the number of elements at each layer of the tree. 

(iii) The layer sequence of a set R is the layer sequence of the 
unfolding tree of R. 

For example, in the tree of the ordinal number 3, shown in figure 
9, one counts (1, 3, 3, 1) going down the layers of the tree. There is 
only one root at the top layer. Then there are three nodes at the first 
layer down, corresponding to the pathways out of 3 = {0, 1, 2} going 
to its three elements, and so on. It is sometimes helpful to think of 
all such sequences as being infinitely long so that the ordinal 
3 = {0, 1, 2} gives the layer sequence (1, 3, 3, 1, 0, 0, 0, 0, ...) rather 
than merely <1, 3, 3, 1). 

5 layer 0 

0 • ! • >. 2 layer 1 

. I .A. • • • • layer 2 

0 • layer 3 

B'igure 15 

The reader may wish to draw the graph of 4 = {0, 1, 2, 3} and 
then draw the unfolding tree of this graph. It has 16 nodes given by 
paths through the graph. Finally, counting the number of objects in 
each layer, we obtain the layer sequence <1, 4, 6, 4, 1, 0, 0, ...). This 
gives a suggestive idea of a connection between the finite ordinals 
and the binomial coefficients. 
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Definition 4.2 
(i) The power series of a set R is the series 

a0 + axx + a2x2 + a;>r3 + ... = E anxn 

where (a0, a1; a2, ...) is the layer sequence of the set R. 
(ii) The generating function corresponding to a set R is the 

algebraic fraction which is formally equivalent to the power series of 
the set R. 

We have seen that the ordinal 3 = {0, 1, 2} has the layer sequence 
(1, 3, 3, 1, 0, 0, 0, 0, ...); so it has the power series: 1 + 3a: + 3x2 + r3 . 
Since this power series terminates in finitely many steps, it is 
already in closed form and is its own generating function. We could, 
of course, write it as (1 + x)3. 

Theorem 4.3 The generating function corresponding to the finite 
ordinal n is (1 + x)n. 

Proof. The proof proceeds by induction on n. When n - 0, the ordinal 
in question is the empty set. Its graph is a Single, isolated node. 
There is but one path in this rooted graph: the path which goes 
nowhere but stays at the root. Thus the unfolding tree is likewise a 
tree of one element. The layer sequence of such a trivial tree is 
<1, 0, 0, 0, ...). So the power series of the empty set is (1). And this 
can certainly be expressed by the coefficients of (1 + 

Let us suppose that we know that the ordinal m = {0, 1, ..., m - 1} 
has the generating function (1 + x)m for each m < n. 

We now have to show that n = {0, 1, ..., n - 1} also has a binomial 
generating function. The elements of n are {0, 1, ..., n - 1}, and these 
stand one layer beneath the root. So at level k in the tree of the 
ordinal n, we will find the same things that lie at level As — 1 of its 
elements. That is to say, at level k the ordinal n has 

fn - 2^ f 0 ) + +...+ 
,k - 1 , 

+...+ 
U-iJ 

nodes in its unfolding tree. Of course, from a certain stage on these 
combination numbers will become 0. So, discarding the null terms, 
we could write 

( n - f 
+ 

fn r/s-n 
- b 
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Now this sum of binomial coefficients can be simplified by adding 
them together in pairs from the right using the identity 

r m > (m +1\ 
+ = 

U J l 1 ) 
(k\ 

So, we may replace the last term of (**) by , and then, using this 

identity, add together the last two terms of (**) obtaining 
(n (k + i^ + +. . .+ + 
U -K y k ) 

\kj 
Continuing this process the whole expression reduces to 

This shows that the layer sequence of n = {0, 1, ..., n - 1} is also a 
binomial coefficient, completing the theorem. • 

The same series of definitions - graph, tree, layer sequence, and 
generating function - can be applied to non-well-founded sets as well 
as to the finite ordinals. When this is done, however, the layer 
sequence is infinitely long. 

The tree of the J-set, J = {J}, is an infinite chain given by 
endlessly circling paths around the sole loop of the graph in figure 2. 
Its layer sequence is plainly <1, 1, 1, 1, ...); and the corresponding 
series is 

1 + x + x? + x3 + x4 + ... = (1 + xT1. 

The expression (1 + x)"1, is the generating function for the layer 
sequence of the J set. 

The set J 1 = {J, Jx} can be seen from its tree to yield the layer 
sequence <1, 2, 3, 4, ...). The next J set, J2 = {J, Jp J<£, gives the 
sequence <1, 3, 6, 10, ...), known as the triangular numbers since 
ancient times. The subsequent J set, J 3 , gives the sequence 
(1, 4, 10, 20, ...) which can be called, by analogy, the tetrahedral 
numbers. It is well known that these sequences are also binomial 
coefficients and form the diagonal sequences in Pascal's triangle. 

Before determining the generating function of the J sets a lemma 
on formal power series is needed. It can be proved by comparing the 
terms in a formal product. 
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Lemma 4.4 If p(x) is the generating function of the power series 
T.anxn, then (1 - x)-1 p(x) is the generating function for the series 
£ bnxn, where bn- a0 + al + ... + an. 

Theorem 4.5 The generating function for the set Jn is (1 - x)~n~l. 

Proof. It has already been checked for n = 0 that (1 - x) -1 gives the 
layer sequence for the J set. Now, suppose that we have the theorem 
for 0, 1, ..., n - 1. 

It will prove useful to have notation for the layer sequences of J 
sets corresponding to our use of combination numbers in theorem 1. 
To this end, let (Jn(0), Jn( 1), Jn(2), ...) be the layer sequence for the 
set Jn given in definition 3.9. 

The induction hypothesis states that: 2Ji(k)xk = (1 -
whenever i < n. The case i = 0 concerns the J-set J = J0 which, as 
we have seen, has the layer sequence (1 - x)-1. 

To prove the theorem for i = n, one must show that the 
generating function for the set Jn is (1 - x) -" -1. This factors into 
(1 - (1 - x)~n; so, by lemma 4.4, we need to show that 

(1) J j k ) = Jn _ !(0) + Jn _ id) + ...+«/„_ 

The notation here differs from that of lemma 4.4 in that the 
Position of a term in the layer sequence is indicated in parentheses 
rather than as a subscript. 

When k = 0, we have J^k) - 0) = 1 for all i, since the trees of 
all J} sets have a unique root. We may assume that (1) holds and by 
induction on k attempt to establish: 

(2) Jn(k + 1) = Jn_x(k) + Jn_ x(k) + ... + Jn_ x(k + 1). 

It is piain from the definition 3.9 that the nodes of layer k+l in 
the unfolding tree of Jt come from layers k in the trees of J0 , JY, ..., 
Jj. After all, these sets are the elements of Ji and form its upper 
layer. Thus we have that: 

(3) Jt(k + 1) = J0(k) + Jx(k) + ... + Jv(k). 

In particular, we have that 

(4) Jn(k + 1) = J0(k) + J\(k) + ... + Jn„ ,(k) + Jn(k). 

Using (1), however, the last term can be replaced. 

(5) Jn(k + 1) = J0(k) + Jx{k) + ... + Jn_ ,(k) + [Jn_ j(0) + ... + Jn_Y{k)l 
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Now, applying (3) to the expression on the right which lies 
outside of brackets one obtains: 

(6) Jn(k + 1) = Jn_yQt + 1) + [Jn_ !(0) + «/„_ i ( l ) + + «/„_m-

But except for the order of the terms, this is what was to be 
established in (2). This completes the theorem. • 

The calculation of the generating function of the pseudo-ordinals, 
n*, of definition 14 can be carried out in a similar way. 

The Fibonacci sets are more removed from the finite ordinals 
than the J sets are, and they have more interesting layer sequences. 

The unfolding tree of the pair K2, K2 is easily seen to be the tree 
appearing in the famous problem of Fibonacci's rabbits. To produce 
the literally correct Fibonacci sequence, <1, 1, 2, 3, 5, 8, 13, •••), we 
must make K2 the root as in Figure 11. When K2

Q is the root we 
obtain an off-by-one Fibonacci sequence (1, 2, 3, 5, 8, 13, •••) instead. 

Figure 16 

It is a well known fact that the generating function for the 
Fibonacci sequence, the layer sequence of K2 is (1 - x - x2)'1. It is 
easy to obtain from this fact, by comparing terms of the respective 
power series, that the generating function for K2 is given by the 
produet (1 + x) (1 - x - x2)-1. 
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The next sets of the Fibonacci type are the triple K*, K^, K3
2. 

Figure 17 shows the tree of 
By counting the layers we intuitively form the sequence 

{ 1, 1, 1, 3, 5, 9, 17, ••• ).This sequence has the property that each 
term after the third is the sum of the preceding three terms. It has 
been called the "tribonacci" sequence for this reason. 

The very idea of forming the neologism "quatrobonacci" would 
probably horrify linguists, so one had better call the next sequence 
the Fibonacci sequence of the fourth level: 

< 1, 1, 1, 1, 4, 7, 13, 25, 49, 94, •••>. 

m / 

i 
j® N 

M / 

I / l \ / i \ 

Figure 17 

Definition 4.6 The Fibonacci sequence of level n is the sequence 
<F0", F", f ; , •••) where F" = F" = - = F" = 1; and 

rn+k k rk+l rk+n~ 1 

Theorem 4.7 The layer sequence of the Fibonacci set Kn
n l is the 

Fibonacci sequence of level n. 
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This final theorem of the kind, theorem 4.7, will be stated 
without proof. The proof is a significantly more lengthy induction 
than the ones used previously here. This complexity arises because 
the Fibonacci sets defined at some given level do not coincide with 
those of earlier levels; this means that an inductive argument must 
proceed less directly. The proof will be given elsewhere. 

A survey of all the possible Finsler sets shows that there are only 
five sets at the second level: 1, 1*, Jv K2 and K\. 

All five of these sets have been shown to be parts of more general 
collections of finite Finsler sets, all of which have ties to familiar 
objects of combinatorial theory. 

Among the sets of the third level, those whose transitive closure 
has three elements, there are many non-well-founded sets other than 
the J sets, pseudo-ordinals, and Fibonacci sets. Among these new 
kinds of sets are some instructive examples that do not appear at the 
first two levels. 

5. The Third Level 

There are several new phenomena that arise for the first time at 
the third level of sets. The most striking is an example of a set 
theoretic equation that has no unique Solution. This example has 
several interesting properties: We might even call them paradoxical. 

Consider the Fibonacci set of the second level K2
0 = {K2, K2}. 

These are the sets of example 1.2. Finsler called them by generic 
names "A" and "B". 

Next, consider the following equation of set theory where X is a 
variable: X = {X, K2}. Of course, X = K2 is a Solution to this 
equation. But there is another possible Solution which shall be 
written "G", though the name is merely a temporary one. 

Example 5.1 G = {G, K2
Q} and G * K2, 

At first one can only say that this defines a class. It surely 
satisfies Finsler's axiom I. If axiom II were to require that G = K^, 
then example 5.1 taken as a definition would be inconsistent. So it 
must be shown that the two sets can be consistently kept distinct. 

To see that they are distinct, form the transitive hulls of both 
sets. Since they are each essential in themselves, the transitive hulls 
and transitive closures are the same. The set K2 is transitive, 
TH(K2

0) = TC(K2
0) = K2

0, and TH(G) = TC(G) = {G, K\, K2}. Thus, the 
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graphs of these two sets can consistently be kept distinct. If we 
assume that G is different from K* and K2, there is nothing that 
forces us to retract the assumption when we examine the structure of 
these sets. The set G is of the third level, its transitive closure has 
three elements: The set K2

0 as we have seen, is of the seconcl level. It 
is easy to see that the equation X = {X, K2} can have no solutions 
other than these two, G and K2

0. 
According to the most strict Standards of set identity, that two 

sets are to be regarded as the same when it is consistent to do so, we 
could not have G * K2. This is piain from the expression of the sets 
in bracket notation. This peculiar fact, that set equations may have 
more than one Solution, is probably the reason that Finsler adopted a 
stricter notion of set identity in his later papers. 

Another phenomenon that first appears at the third level 
concerns subgraphs of the graphs of a set. In Figure 18 there is a 
graph of three elements showing a specially marked subregion. 

. A i . 

Figure 18 

In this graph the enclosed region is seif contained, that is, arrows 
enter it but do not leave. The nodes within this region must also 
stand independently as sets if the entire graph represents a set. In 
Figure 18 this does not happen because the enclosed region, or 
district as we shall call it, possesses a automorphism. 

Definition 5.2 A district is a subgraph in which nodes of the 
district are related only to other nodes of the district by the 
unrestricted graph. 

In other words, arrows which originate within a district must 
remain there. 

Definition 5.3 A graph is firm if no district is isomorphic to a 
different district and no district has an automorphism other than the 
identity. 
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Using these definitions theorem 11 can now be strengthened to 
require that districts within a graph properly define sets too. 

Theorem 5.4 The graph of a set is firm. 

Proof. Suppose there were an isomorphism between the districts 
D and E taking deD to eeE. Since the transitive hull of d will lie 
entirely within D and that of e within E, it must be that the graphs 
of d and e are isomorphic and therefore they are the same set. So the 
isomorphism would have to be the identity. • 

As a result of Theorem 5.4 the graph of Figure 18 is not a set. 

Example 5.5 A = {B}, B = {A,Q, C = {A, B}. 

The graph given by this example is firm and extentional. Either 
A, B, or C can be a root and still have accessibility. Finsler's axioms 
can be usecl to show that these are all bona fide sets. To see that 
Finsler's axiom II holds, one must check that the sets are distinct 
and different from sets of lower levels. 

The set A has a tree isomorphic to the füll Fibonacci tree of K2, 
Figure 16. So by the Standards of Scott [1960] the sets would be 
identified to yield B = C and A = K2. 

These circular set definitions resemble situations in automata 
theory or in the theory of feedback, additional details can be found in 
Booth [1991], In any case, it is clear that A, B and C could 
consistently be collapsed to the J-set, J = {«/}. Similar sets can be 
defined at any finite level, as in example 5.6. 

Example 5.6 A0 = {.4j}, A y = {A0, A2}, A2 = {A0, A3}, •••, 
= Mo> 

Example 5.7 P = {Q, 0}, Q = {P, Q, 0}. 

In example 5.7 either P or Q can serve as a root. The set P has 
the same layer sequence, (1, 2, 3, 5, 13, •••} as K2

0 but has a tree that 
is not isomorphic to the tree of K2. This example is also instructive 
because it produces two sets, P and Q, that are very closely related to 
the sets K2 and K2

Q respectively, yet the former can be consistently 
collapsed to the set 1*, while the latter collapses to J. To see this one 
can employ the criterion 3.10. 
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To survey the remaining sets of the third level, replace the 
relations among three objects by their adjacency matrix, a 3x3 
matrix of O's and l's, as was done in section 3 for the second level. 
This gives 29 = 512 relations. As before, the matrix may be read as a 
binary integer; giving a convenient enumeration of the relations: 0, 
1, •••, 511. An argument using Burnside's theorem, which is 
described in general in Davis [1943], shows that these relations fall 
into 104 isomorphism types. The isomorphism types of firm, 
extensional, root accessable graphs at the thircl level all turn out to 
be Finsler sets. 

Estimating the number of Finsler sets of an arbitrary level is 
complicated by the fact that various numbers of sets are defined by 
each of the suitable graphs. 

For example, some graphs define new sets at every node. At the 
third level there are 14 such graphs, shown in Figure 19. 

(iii) (iv> 
©—*-($> ff)» ff) ff) t © © < » © 

ö 
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Orii) u i i i ) (x iv) 

V ^ € > 

o ö <!) 
Figure 19 

These 3x14 = 42 sets would all collapse to the J-set were we to 
adopt the most conservative Standards of acceptance for non-well-
founded sets, the criterion 3.10. They sets can be given in set 
theoretic notation too. 

(i) A = {B) B = {Q C = {A,B} 
(ü) A = {B} B = {Q C = {A, Q 
(üi) A = {B} B = {Q C = {A, B, Q 
(iv) A = {B} B = {A,Q C = {B, Q 
(v) A = {B} B = {A,Q c = {A, B) 
(vi) A = {B} B = {A,Q c = {A, B, Q 
(vü) A = {B) B = {B,Q c = {A, B} 
(viii) A B = {B,Q {A,Q 
(ix) A = {B} B = {B, Q c = {A, B, Q 
(x) A = {B} B = {A, B, Q c = {A, B} 
( X I ) A = {B} B = {A, B, Q c = {B,Q 
(xn) A = {B} B = {A, B, Q c = {A, Q 
(xiii) A = {B,Q B - {A, B} c = {A, B, C} 
(xiv) A = {A, B} B = {B,Q c = {A, B, Q 

Example (v) in this list has been given in Aczel [1988, 54], 
There are also graphs which define only two new sets - the third 

node must be either 0 or J. These are given as graphs in Figure 20, 
and also listed using braces. 

Öa) A = {B} B = {A, 0} 
(ib) A - {B} B = {A,J} 
(üa) A = {B} B = {A, B, 0} 
(üb) A = {B} B = {A, B, J} 
W A = {B, 0} B = {A,B} 
(mb) A = {B,J} B = {A, B} 
K ) A = {B, 0} B = {A, B, 0} 
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(ivb) A~ {B, J) B = {A, B, J} 
(va) A = {A, B) B = {A, B, 0} 
(vb) A = {A, B} B = {A, B, J} 

The examples occur in pairs: One member of the pair has a J-set 
where its mate has an empty set. If we were to identify sets when it 
is consistent to do so, then the left hand graph in each pair 
represents the set 1* while the right hand set represents J. Of 
course, in the Finsler theory sets have their own independent 
existence whenever that is consistent, so all of these diagrams define 
two new sets (one at each of the encircled nodes). 

(i) (ii) 

@ <««•'• Uli» @ 0 @ © < ^ © J © )> @ | 

/ / r r 
o • o 

(iü) (iv) 

o • o 
(V) 

O — — < 0 
/ / o 

Figure 20 
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These ten graphs provide 20 sets, two for each diagram. The set 
given on the right of (iii) in figure 20 - it is (iii b) in the table on the 
previous page - was given as an example in Aczel [1988, p. 55]. 

Finally, there are 16 more sets which arise from graphs of three 
nodes, two of which correspond to sets of the first or second level. Six 
of these, shown in Figure 21, are variations on nested singleton sets 
made by attaching self-membership loops. The loops can be placed 
arbitrarily except that the two nodes at the bottom must never 
resemble the non-extensional graph of on the right of Figure 7. 

0 ) (2) (3) (4) (5) (6) 

Figure 21 

In general, there would be 3*2" ~ 2 sets of this kind at level n. 
At last, we have obtained some sets of the third level that remain 

sets even under strict conditions of identity. The last two in figure 
20, numbers 5 and 6, can be consistently labeled "J" at every node: 
Thus they fail to be sets by Aczel's criterion 3.10. The first four 
graphs, however, define sets by any Standards of set identity. 

The sets in figure 21 are listed in brackets below: 

(1) {1} = {{0}} (4) A = {A,1*} 
(2) II*} (5) { J J 
(3) A = {A, 1} (6) A = {A, JJ 

There are other diagrams, besides those of Figure 21, that define 
a single Finsler set of the third level. Just as loops were inserted into 
the diagrams of Figure 21, we can also put loops onto the graph of an 
ordinal number. These generalized ordinals resemble ordinal 
numbers: They are all transitive sets whose members are transitive 
sets, but they can be, of course, non-well-founded. We may call them 
mirage ordinals. There are four of them at the third level. 
Continuing with the numbering of the sets begun in Figure 21, these 



238 Combinatorics 

mirage ordinals - a real ordinal is among them - will be numbered 7-

Two of these ordinal mirages, 2* and J2, have been defined in 
section 3. One might have expected as many as eight mirages, 
including the real ordinal 2 = {0, 1}, but the requirement of 
extensionality leaves only these four. For example, {0,1*} is 1* and 
not a set of the third level; likewise {J, J^is Jl. 

The following table and graphs give 2 = {0, 1} and its mirages. 

The last example in this series, 10 in Figure 22, can be labeled "J" 
at every node, so by the strict criterion 3.10 it is merely an elaborate 
definition of the J-set. The other graphs, however, have a node with 
no descendents which must be labeled as the empty set. These 
graphs define new sets by any Standards. 

The remaining sets of the third level are given in the table below 
and shown in figure 22. 

10. 

(7) 
(8) 

2 - {0, 1} 
A = {A, 0, 1} 

(9) 2* = {0, 1*} 
(10) J 2 = {J, Jx) 

Figure 22 

d l ) {/<} 
(12) A = {A, < } 
(13) A = {A, Kl) 

(14) A = {A,K'20,Kl) 
(15) A = {A, 0, 1*} 
(16) A = {A, J, JA 

Four of these examples have Fibonacci sets within them. 
Example 11 in Figure 23 was previously given as example 5.1. 
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(11) (12) (13) (1-1) 

& O O Q 
/ / \ A 

(15) (16) 

Z V A "O G O 
Figure 23 

These 16 sets, the 20 that are in pairs in figure 19, and the 42 in 
figure 19 give 78 Finsler sets. 

Proposition 5.8 finsler{3) = 78. 

This value was given in Booth [1990] although there are several 
errors there in the listing that have been corrected here but di.d not 
effect the total. Only nine of these sets satisfy the most strict 
criterion of set identity, 3.10. 

6. The Countable Level 

Two of Finsler's original examples, Figures 4 and 5 of this volume, 
involved sets at a countable level. The graph of Figure 4 defines sets 
that meet the strict Standards of set identity of criterion 3.10. The 
example is particularly instructive as giving non-well-founded sets 
that are nevertheless circle-free. 

If we loosen the Standards of set identity, then, as we would 
expect from the finite levels, many more sets appear. A particularly 
elementary example is shown in Figure 24. 
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Figure 24 

By strict Standards of set identity, E0 = El = ... = J, since the 
nodes of the graph can be labeled "J" without violating the facts of 
set membership. 

We can change various of the double arrows in Figure 19 to Single 
arrows in order to obtain uncountably many hereditarily finite sets. 
We can also obtain uncountably many hereditarily finite sets that 
meet the stricter conditions of 3.10. 

There are a number of other instructive examples of non-well-
founded sets at the countable level; but there is not yet a general 
theory concerning them. 

In the past combinatorial set theory has treated problems 
concerning the relations between various classes of subsets of a §et. 
When we look beyond the familiar well-founded sets towards the 
non-well-founded sets, a new variety of combinatorial set theory 
meets our gaze. The examples given here indicate a close connection 
between the structure of non-well-founded sets and parts of 
traditional combinatorial theory: graph theory and enumeration 
theory. 
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First published as: "Totalendliche Mengen" (Dedicated to B. L. van der Waerden in 
honor of his 60th birthday.), Vierteljahresschrift der Naturforschenden Gesellschaft in 
Zürich 108 (1963), 141-152 (MR 37, 6189). 

Totally Finite Sets 

§1. Sets of Finite Depth 

The sets which are considered here are pure sets, i. e. their 
elements too are pure sets. 

The empty set, which possesses no element, and the unit set 
which contains only the empty set are examples of such sets. 

The elements of a set m, the elements of these elements etc., 
form the transitive closure of m. These sets will be called essential in 
m. If a set a is essential in b and b in c, then a is also essential in c. 

If the transition from a set m to its elements, then to the 
elements of these elements, etc. can be made only finitely often, then 
this set m is said to be of finite depth. The sets essential in a set of 
finite depth are likewise of finite depth. 

A set of finite depth is never essential in itself, otherwise this 
transition would not terminate. If a set b is essential in a set a which 
is of finite depth, then o is not essential in b, for otherwise a would 
be essential in itself. 

If the transition from a set m to its elements, then to the 
elements of the elements, etc. can be carried out exactly s times, then 
s is said to be the depth of the set m. Thus the empty set has depth 0: 
The unit set is of depth 1. 

A set of finite depth, together with the sets essential in it, has a 
definite structure which involves the sets essential in it. If the sets a 
and b have the same structure, i. e., if these sets together with the 
sets essential in them can be mapped onto one another in a one to 
one, element-preserving fashion, then they are identical, but 
otherwise they are different. The unit set is different from the empty 
set, because it possesses one element, whereas the empty set 
possesses no elements. There is, however, only one empty set and 
only one unit set. 

The elements of a set must always be different from one another. 
A set is said to be finite if it possesses only finitely many 

elements; the number of these elements is called the cardinal 
number of the set. 

A set is said to be totally finite if it itself and all sets essential in 
it are finite, and if in addition it is of finite depth. 
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It will be shown that: Every set of finite depth is totally finite, 
The elements of a set m form the first depth beneath m, the 

elements of these elements the second depth, etc. A fixed set, e.g. the 
empty set, can belong to different depths of m and can also appear 
more than once at a given depth. But it is to be counted only once. 
The last depth down from m necessarily consists only of the empty 
set, a finite set. 

If the k-th depth from m consists of only finitely many finite sets, 
then the same holds also at the depth (k - 1). The proposition follows 
from this by induction. 

The totally finite sets together form a Cluster, which we shall 
analyze. 

§2. Sets as Numbers 

The number 0 can be represented by means of the empty set: the 
number 1 by the unit set. 

Consider the natural numbers 1, 2, 3, ... ; each successive one can 
be represented by the set which contains the immediately preceeding 
one as its sole element, thus: 2 = {1}, 3 = {2}, etc. We have also 1 = {0}, 
but 0 is not a natural number. One might call 0 a vanishing number. 

The natural numbers are then represented by totally finite sets, 
of which each possesses exactly one element; hence they are sets 
with cardinal number 1. The depth of a natural number coincides 
with the number itself. 

The ordinal numbers 0, 1, 2, 3, ... can be defined so that each 
ordinal number represents the set of all previous ordinal numbers, 
thus 0 = {}, 1 = {0}, as before, but 2 = {0, 1}, 3 = {0, 1, 2}, etc. 

The sequence of ordinal numbers can be continued into the 
transfinite. The finite ordinal numbers are all totally finite sets: 
Their cardinality and depth both coincide with the number itself. 

Let us now regard all totally finite sets as generalized numbers, 
or simply as numbers, since we will not refer to numbers of any other 
kind. Unlike the natural numbers the generalized numbers may be of 
any finite power. Their depth is also finite. Now it will be shown that 
addition and multiplication can be introduced into the generalized 
numbers with certain modifications, in such a way that these 
Operations act correspondingly on the depth numbers. 
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§3. The Order of the Numbers 

The cardinality of an arbitrary number z will be denoted by z*, 
the depth as |z|. For the natural number n: m*=1 and |n|=n. 

In order to put the numbers, that is to say the totally finite sets, 
into a simply orderecl sequence, one could order them in the first 
instance by increasing depth, those of the same depth according to 
their cardinality, and those of equal power according to their 
elements, which we may assume ordered already. 

To survey the number of sets at a fixed depth, one can first order 
all the numbers up to a fixed depth s in a definite way. Placing these 
orderings one behind the other for increasing s; then delete the 
numbers of smaller depth which have already been listed. 

The provisional ordering of all numbers z such that \z\ < s will be 
defined as follows: Suppose that the ordering of the numbers y with 
[y| < s is already known. The numbers z such that \z\ < s shall then be 
ordered according to their cardinality; those with equal cardinality 
are ordered lexicographically with respect to the known ordering for 
the elements of y. 

In this way one obtains provisionally ordered sequences of 
numbers at each depth s: for s = 0, the number 0. For s = 1, it is the 
sequence 0, 1. For s=2, it is the sequence 0, 1, 2, 2. For s = 3 one 
obtains, when the cardinal number z* = 0, the number 0; then there 
follows, with z* = 1, the numbers 1, 2, 3, {2}; when z* = 2, the 
numbers 2, {0, 2}, {0, 2}, {1, 2}, {1, 2}, {2, 2}; when 2* = 3, the numbers 
{0, 1, 2}, 3, {0, 2, 2}, {1, 2, 2}; and finally, when z* = 4, the number 
{0, 1, 2, 2}. 

The number of numbers 2 such that \z\ < s is thus given by 2° = 1, 
21 = 2, 22 = 4, 24 = 16 for s = 0, 1, 2, 3 respectively. 

If in general the number of numbers y such that [y| < s is equal to 
71, then for the numbers z such that \z\ < s one obtains ( n ) of them m 
having cardinal number z*=m. Thus there are 2n numbers 
altogether. For s = 4 there are 216 = 65536, for s = 5, 265536, etc. 

The number of numbers for which the depth number is exactly 
equal to s amounts therefore to 1, 1, 2, 12 , 655 20, 265536 - 65 5 36, etc., 
for s = 0, 1, 2, 3, 4, 5, etc. respectively. 

One obtains the final ordering of the numbers by deleting all 
numbers satisfying \z\ < s from the provisional ordering of the 
numbers z such that |z| < s and placing the sequences so obtained for 
increasing s one behind the other. 

The numbers such that = 5 remain ordered according to their 
cardinal number. For numbers with the same cardinal number, 
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however, there can result certain transpositions when the final 
ordering is compared with the provisional ordering. 

For the numbers z with \z\ < 3 the final ordering is different from 
the provisional ordering only in that the number 2 moves from the 
sixth to the fourth place, and thus comes to stand between the 
numbers 2 and 3, while the numbers 3 and {2} move to fifth ancl sixth 
places respectively. A comparison of the provisional and final 
ordering shows, for example, that for those z satisfying \z\ = 4 and 
z* = 2, the provisional rule is not fulfilled in the final ordering. The 
number {3, {2}} occurs before the number {3, 2}, whereas according to 
the first rule the reverse would have to hold. 

§4. The Figure of a Number 

To each number one can associate a figure which is composed of 
points and arrows. 

For each number itself ancl each number essential in it there is a 
point of the figure. From the point, o, corresponding to the number a, 
there proceeds an arrow to the point b, if b is an element of the 
number a. One can also call the points of such a figure the numbers 
of the figure. 

The arrows can be replaced by line segments if one specifies that 
these shall always be orientated "from above to below". An 
orientation of the diagram is then required; the line segments can be 
inclined to this primary direction but are not allowed to be 
perpendicular to it. 

The "highest" point of the figure of a number 2 represents z itself: 
The "lowest" point represents the empty set, that is the number 0. 
The empty set, zero, is essential in every number which is different 
from 0. 

Each figure of a number is connected; by starting from the 
highest point one can reach every point of the figure by a connected 
sequence of arrows. 

For the numbers z such that \z\ < 3 one obtains the figures for the 
provisional ordering that are shown on the following page: 
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{0,1} {3} 

{0,2,2} {1,2,2} {0.1,2,2! 

Figure 24 

In order to make the different depths of a number 2 clear, it can 
be useful to employ another representation in which the elements of 
z are represented by points in an horizontal row, the elements of 
these elements in the second row etc. Again each number is 
connected to its elements by means of an arrow (or a line segment). 
In these diagrams a number can appear in more than one depth in a 
diagram, so they are no longer uniquely associated with a point. 

The last number in figure 24, with \z\ = 3, that is the number 
{0, 1, 2, 2}, has the following form: 
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0 1 

Figure 25 

The previous kind of figure can be thought of as flowers and the 
last as the corresponding umbels of the Clusters which have already 
been mentioned. 

§5. Addition 

The figure of the surn a+b of two numbers a and b is obtained by 
replacing the point 0 in the figure for a by the point b of the figure 
for b, that is by "attaching" the two diagrams so that the "lowest" 
point of the figure for a coincides with the "topmost" point of the 
figure for b. This defines the sum a + b. 

The following rules result: 

Addition is associative, i. e., a + (6 + c) = (a + b) + c. This is 
directly evident. 

Addition is not always commutative; for example, 1 + 2 = {2} but 

We always have 0 + a = a+0 = a. 

From a + b - a it follows that 6-0; and from a + b = b follows 

The depth of a number z is equal to the greatest number of 
arrows forming a directed path from z to the point 0. From this 

2 + 1 = {1, 2}. 

o = 0. 
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follows: When the numbers are added of numbers their depth, 
numbers are also added, i. e. \a + b\ = |a| + |6|. 

For the natural numbers this addition coincides with the usual 
addition, and therefore rn + n = n + m holds for natural numbers m 
and n. 

The cardinal number of a sum is equal to the cardinal number of 
the first non-vanishing term of the sum, i. e. (a + b)* - a* for a * (). 

A sum of at least two non-vanishing ordinal numbers is not an 
ordinal number, since otherwise the element number of the first 
term of the sum would has to increase itself. 

Since the empty set is essential in every non-vanishing number, 
the following rule holds: If a * 0, then one obtains the sum a + b by 
first adding the number b to each element of a and then forming the 
set of these numbers. 

Together with the rule 0 + b = b this provides an inductive 
definition of addition since the elements of a possess a depth less 
than that of the set a itself. 

In particular 1 + b = {0}+6 = {6} and, for example, 2 + 1 = 
{0 + 1} +1 = {1, 2}. 

§6. Mononumbers 

A number which can be represented as the sum of two non-
vanishing numbers is said to be "additively composite" or, more 
briefly, decomposable. 

The non-decomposable, that is to say the additively non-
decomposable numbers, with the exception of 0, are called 
mononumbers. 

The number 0 is not a mononumber, just as the number 1 is not 
a prime number. 

The number 1 is a mononumber; the rest of the natural numbers 
are decomposable. 

In order to determine all mononumbers it is simplest to delete 0 
and the decomposable numbers from the sequence of all numbers as 
in the "sieve of Eratosthenes". 

Among the numbers which have depth 2, the number 2=1+1 is 
decomposable; the number 2 = {0, 1} is a mononumber. 

When numbers are added their depths are also added, so one 
easily finds that the numbers 1 + 2 = 3, 1 + 2 = {2}, 2 + 1 = {1, 2} are 
the decomposable numbers of depth number 3; consequently there 
are 9 mononumbers of depth number 3. 
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Amongst the 65520 numbers of depth 4 one finds 12 of the form 
1 + x, in addition to these there are 10 more of the form x + 1, 
and finally the number 2 + 2 = {2, {2}}. Altogether there are 23 
decomposable numbers; accordingly there remain 65497 mono-
numbers of depth number 4. 

Among the numbers of depth number 5 there are 131047 
decomposable numbers: namely 65520 of the form 1 + y; in addition 
to these, 65508 more of the form y + 1; there are 10 more of the form 
2 + x; and an additional 9 of the form x + 2; where in each case y has 
depth 4 and x has depth 3. Consequently there remain 265536-196583 
mononumbers of depth 5. 

§7. The Decomposition of Numbers into Mononumbers 

A number k essential in the number z is said to be a knot of if 
the figure of 2 splits up with the removal of the point k so that it is 
disconnected. 

The figure of z will then split into two parts. The second part 
contains the numbers essential in k including 0; together with k they 
yield the figure for k. The first part contains the numbers which can 
still be reached by directed paths from z. The number k is essential 
in them, since each of these outgoing sequences of arrows, leading 
ultimately to 0, must pass through the point k. If one replaces the 
point k by the point 0 to make the knot into the "lowest" point of the 
figure, then one obtains the figure of a number a which satisfies 
z = a + k. Thus the number 2 is decomposable. 

Since conversely a decomposable number z, where z = a + b and 
a * 0, b ^ 0, possesses the knot b it follows that: The non-vanishing 
numbers which do not possess knots are mononumbers. 

One easily finds that: If k is a knot of a, then k + b is a knot of 
a + b; if l is a knot of b, then l is also a knot of a + b. Thus, for a * 0 
and b * 0, the number z = a + 6 possesses exactly one knot more than 
the numbers a and b together. 

If k and l are distinct knots of z, then either k is essential in l or l 
is essential in k depending on whether l belongs to the first or to the 
second part of the decomposition of z at k. If k is essential in l, and l 
in m, then k is also essential in m. Thus the sequence of knots is 
linearly ordered. 

One can "resolve" the knots of a number z, in an arbitrary order, 
replacing them by sums; this yields a representation of 2 as the sum 
of /i + 1 mononumbers, when the number z has n knots. This 
representation is unique with respect to the order of the terms of the 



Totally Finite Sets 249 

sum. The diagrams of the summands lie before, between, and after 
the knots of z. 

If one also says that the number 0 is representable as the sum of 
0 mononumbers, and every mononumber as the sum of one 
mononumber, then it follows that: Each number is uniquely 
representable as a sum of mononumbers. 

From the unique decomposition of numbers into mononumbers 
there follows a lemma, which will be useful later: If a + b = c + d, 
then |a| = |c| and |6| = \d\ imply that a=c and b = d. 

The depth numbers of the mononumbers are always at least 1 
and are themselves added when mononumbers are added. The first 
mononumbers in the complete decomposition of the number z = a + b 
= c + d produce a total depth of |a| = |c|. So these numbers are the 
same in both sums; this means, however, that a = c and consequently 
b = d. The same result follows if one considers the sum of the last 
mononumbers with total depth number |6| = |d|. 

§8. Multiplication 

The figure of the produet ab of two numbers o and b is obtained 
by replacing each arrow in the diagram of a by the diagram of b. The 
produet ab is defined in this way. This produet of the numbers is not 
the same as the usual Cartesian produet in set theory. 

This yields the following rules: 

Multiplication is associative: a(bc)=(ab)c. This is directly evident. 

Multiplication is not always commutative. For example, 2 • 2 = 
2 + 2 = {2, {2}}, but 2 • 2 = {1, 3}. 

It always holds that 0 • a = a • 0 and 1 • a = a • 1 = a. 

From ab = 0 it follows that a = 0 or b = 0; from ab = a it follows 
that b = 1; and from ab =b it follows that a = 1. 

These results can either be obtained directly or from the 
following rule: When numbers are multiplied their depth numbers 
and cardinal numbers are multiplied as well: \a\ |6| = \ab\ and 
a*b*=(ab)* 

The "longest" path from a to 0 in the figure of a contains \a\ 
arrows, the longest path from b to 0 in the figure for b contains |6| 
arrows. Thus if one replaces each arrow in the figure of a by the 
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figure of b, one obtains |a| |6| as the length of the longest path from ab 
to 0 in the figure of ab. 

In the figure of a, a* arrows proceed from the point a, and in the 
figure of b, b* arrows from the point b, thus there are a*b* arrows 
from the root of ab. 

If n is a natural number, then na = a + a + ... + a is equal to the 
sum of n terms each equal to a. 

The figure for n consists of n arrows following one after the other 
which are then each replaced by the figure of a, yielding the figure of 
the sum a + a+ ... + a. 

In particular, the product mn of the natural numbers m and n 
has the usual meaning; furthermore mn = nm. 

The distributive law in the form (a + b)c = ac + bc holds in 
general, as can be seen directly. 

The left distributive law however can fail, as in: 2(1 + 1) = 2 • 2 * 
2 • 1 + 2 • 1 = 2 • 2. 

A product of ordinal numbers is in general not an ordinal 
number: for example, 2 • 2 = {0, 1, 2, {2}} * 4 = {0, 1, 2, 3}. 

§9. Commutative Sums 

The relation a + b = b + a holds for mononumbers only if a = b. 
This follows directly from the uniqueness of the additive 
decomposition of a + b, since the first term of the decomposition is 
uniquely determined. 

For arbitrary numbers a * 0 and 6 ^ 0 the following proposition 
holds: I f a + b= b+ a then a = mc and b = nc where m and n are 
natural numbers. 

For the proof let the numbers a and b be represented as sums of 
mononumbers: a = d1 + d2 + ... + dk, b = e1 + e2 + ... + et. 

From the uniqueness of the decomposition of the number: 

z = a + b = b + a 

into mononumbers, one has for k > l that d1 = e1; d2 - e2, ..., ej. 
Now put + ... + dk = bl so that a = b + bl and z = b + bl + b = 
b + b + bv Thus bl + b = b + bl. 

Now z1 = bl + b = b + bl can be treated similarly. Whereas z = 
a + b splits into k + 1 monoterms in its sum, z = b + bl contains only k 
such terms. 

If one now puts k = l + then one can write l = l± + l2 and 
b = + b2 for l > Zj, where z = bl + bl + b2 = bl + b2 + This gives: 
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bl + b2 = b2 + bl - z2. For Zx > Z, however, one places ZL = l + l2 and 
bl = b + b2 where zl = b + b2 + b = b + b + b2, yielding b2 + b = b + b2 = 
z2. In either case z2 contains fewer terms than z1. One can continue 
in this way. Since the number of terms of the sum cannot decrease 
infinitely one comes to 

zr=bq+br=br+bq 

where Zr = lq. But then it follows that br= b = c. 
This procedure corresponds to the Euclidean algorithm and l r = 

Z = t = (k, Z) is the greatest common factor of k and Z. 
By running through the equations in the reverse order, one can 

conclude from lr= lq= t that k = mt and Z = nt. Likewise, it follows 
from br- bq= c that a = mc and b = nc must hold with the same 
natural numbers m and n as factors. 

If, for example, > l and b2 = (m - 2m)c and b = nc have already 
been found, then it follows that = b + b2 = (m - n)c and a = b + = 
mc. 

§10. The Prime Numbers 

A number which can be represented as the product of two 
numbers different from 1 and 0 is said to be "multiplicatively 
composite" or just composite. 

The numbers which are not composite, with the exception of 0 
and 1, are called prime numbers. 

If a factor of a non-vanishing product is not a natural number, 
then the diagram of this factor contains at least one point from which 
at least two arrows proceed; this will also hold for the figure of the 
product. It follows that: A product of numbers is a natural number 
only if all factors are natural numbers. Thus the prime numbers 
among the natural numbers are the usual prime numbers. 

Because the multiplication of numbers causes their depths to 
multiply too, the following proposition holds: Every number whose 
depth number is aprime number is itself a prime number. 

One can find the prime numbers most simply by deleting the 
numbers 0 and 1 and the composite numbers from the sequence of all 
numbers. 

All numbers with depth number 2, 3, 5 are prime numbers. 
Among the numbers of depth number 4 there are composite numbers 
2 - 2 = 4, 2 • 2 = {2, {2}}, 2 • 2 = {1, 3} and 2 • 2 = {0, 1, 2, {2}}. 

Among the numbers z such that \z\ < 5 there are therefore only 4 
which are composite: There are 265536 - 6 prime numbers. 
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§11. The Decomposition into Prime Factors 

If a number z is composite, then it can be expressed as the 
product of two numbers each of them possessing lesser depth than z 
itself. These factors, in as much as they are not prime numbers, can 
be split again into factors of lesser depth, and so on. Since the depth 
cannot decrease infinitely, one finally represents the number z as a 
product of prime factors. 

If one says in addition that the number 1 is the product of 0 
prime numbers, and that each prime number is the product of one 
prime number, then it follows that: Every number different from 0 is 
expressable as a product of prime numbers. 

In such a decomposition the order of the factors is essential. In 
order to obtain a unique decomposition one would need to list the 
prime factors of the natural numbers, according to magnitude. It 
remains an open question, however, whether this device is sufficient 
to insure uniqueness. 

First of all the question arises: in which cases is the product 
commutative? i. e., when does ab = ba hold? 

If one denotes the product of n equal factors a as the nth power of 
a, then the rule aman - anam = am+ n holds for all natural numbers m 
and n. Further, mn-nm holds for natural numbers m and n. 

It still remains to be seen, whether ab = ba, for a * b, is possible 
in other cases, for example when a and b are prime but not natural 
numbers. It always happens that ab * ba when a is decomposable 
and b is a mononumber different from 1, since the number of knots of 
a is preserved in the product ab, but vanishes in ba. 

There now follow a few special propositions concerning 
factorization: If m is a natural number, then from ma = rnb it follows 
that a = b; thus "left cancellation" holds for a natural number. 

We have that |a| = |6|; if one represents the products ma and mb 
as sums of m equal terms however, it follows that a = b by the lemma 
at the end of §7. 

If z = pa = qb where p and q are disti.net natural prime numbers, 
then z = pqc, for some suitable c. 

Since the depth \z\ is divisible by the distinet prime numbers p 
and q, and consequently also by pq; \z\ can be put equal to pqs. It 
follows that |a| = qs and |6| = ps. 

Let p < q. As is well known, mq can be expressed in the form 
iip + j, for m = 0, 1, 2, p - 1, and j likewise takes all the values 0, 
1, 2, ..., p - 1. If this were not so, then two equal remainders j would 
have to occur, so that np + j = mq, and kp + j = Iq. From this it would 
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follow that (k - h)p = (l - m)q. Thus l - m would be divisible by p; and 
if l were also allowed to assume only the values 0, 1, 2, ..., p - 1, then 
it would follow that l - m and k = n. 

Now for each depth js with j = 1, 2, 3, ..., p - 1, the figure for b 
must possess a knot, since n\b\ + js can be put equal to ups +js- mqs: 
and the figure for z has a knot at the depth mqs - m\a\. Thus 
b = cl + ... + cp with \cj\ = s (j = 1, ..., p) and ma = nb + Cj_ + ... + cy 

The last term a in the sum a + ... + a = ma consequently has the 
form a = ... + cx + c2 + ... + Cj. Since this holds for j = 1, 2, ..., p and 
\Cj\ = s, so it follows by the lemma derived in §7 that c1-c2 = ... = cp 
must hold. Should this number be put equal to c then b = pc, and 
consequently z = qb = pqc and a = qc. With this the proposition is 
proved. 

In general it follows that: If z = ma = nb and k is the least 
common multiple of the natural numbers m and n then z = kc for 
suitable c. 

In the first instance one can take out the greatest common 
divisor of m and n as a factor to the left. If m and n are relatively 
prime, and if p is a prime factor of m, and q a prime factor of n, then 
by the last proposition the factor pq in ma and nb can be factored out 
to the left. But if, for instance, m = 1 so that a = nb, then the factor n 
can be taken out to the left when one replaces a by nb. 

If one carries out this Operation for z = ma = nb as far as possible 
along the row, then k is finally split off entirely. So z is represented 
in the form z = kc. 

It still has not been shown that in every prime factor 
decomposition of the product of the natural prime numbers 
Standing on the left is always divisible by k. In every case, however, 
there exists a greatest natural number k, which can be factored out 
from z to the left in a suitable representation. 

Analogous results follow for when the natural numbers occur as 
factors on the right hand side; their derivation is, however, different. 

If a number z is multiplied on the right by a natural number n 
then each number essential in z in the diagram of z is multiplied by 
n, since each arrow is replaced by the figure of n. 

A number essential in u is said to be a branching number of 
degree d, if it possesses d elements and d > 1. If z is multiplied on the 
right by the natural number n then the branching numbers are 
preserved along with their degree; they are only multiplied by n. 

A row of arrows following one upon the other, and leading from 
the point z or from a branching number of z to another branching 
number or to the point 0, and which does not otherwise meet any 
other branching number is sais to be a road. The number of arrows 
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in a road is called its length. If the product zn is formed, then every 
road aquires a length which is a multiple of n. 

Now if the greatest common divisor of the lengths of all roads 
which occur in the figure for z is equal to m, then z can be 
represented in the form z = cm; the figure of c is obtained from the 
figure for z by "shortening" the roads to an mpart of their former 
length. The number m is the greatest natural number which can be 
factored out from z to the right; as such it is uniquely determined. 

With this, however, it has still not been shown that in every 
prime factor decompositon of z the product of natural prime numbers 
standing to the right is always equal to m. 

From am = bm it follows, however, that a = b. Thus if m is a 
natural number right cancellation is permissible. 

If z = anb * 0 where a and b are not natural numbers but n is, 
then one can factor a greatest natural number out of a to the right 
and out of b to the left and then combine these with the factor n. This 
yields a greatest natural number which can appear as a factor of z in 
this position of a decomposition. 

The question presents itself as to whether things other than 
natural numbers can be factored out in a similar way. 

§12. The Union and Intersection of Numbers 

Since the generalized numbers are sets, the usual set theoretic 
Operations of unions and intersections can also be applied. 

The union a^jb of two numbers a and b is a number which 
possesses every element of a and every element of b and only these 
as elements. 

The intersection au6 of two numbers a and b is a number which 
possesses precisely those elements which occur in a and at the same 
time in b. 

Thus e. g. 

I u 2 = 2, I n 2 = 0, I n 2 = 1 , 2 n 2 = 2. 

In general, 

O u o = o u 0 = a; 0 n a = a n 0 = 0; a <u a — a^j a = a. 

The Operations of union and intersection are commutative and 
associative: 

aub = b u a; anb = b na; 
o u ( i ) u c ) = ( f lu 6 ) u c = a u f c u c ; 
a n (6 n c) = (a n 6) n c = a n b n c. 



Totally Finite Sets 2 5 5 

Further the distributive law holds: 

a u ( 6 n c ) = ( a u 6 ) n ( a u c); 
a n ( f e u c ) = : ( a n i ) u ( a n c). 

The following rules hold together with addition: 

(a^j b) + c = (a+ b) kj (b + c), where a * 0, b * 0, 
(a r\ b) + c ~ (a + b) r> (b + c), where a n ö ^ O . 

When adding c, the 0 occuring in the figures for a, b, a^> b, a o 6 
and which is essential in these numbers, is replaced throughout by 
the figure for c. This will yield these equalities. Since 0 is not 
essential in itself, however, one has to pay attention to the 
exceptions; e. g. 

(0 u 1) + 1 = 2 * (0 + 1) u (1 + 1) = 2 and 
(1 n 2) + 1 = 1 * (1 + 1) o (2 + 1) = 0. 

Further we have in general: 

a + ( 6 u c ) ' i ( a + 6 ) u ( a + c), 
a+ (b r^ c) * (a+ b) (a + e). 

This can easily be seen from the examples: 

1 + (1 u 2) = {2} * (1 + 1) u (1 + 2) = {1, 2} and 
1 + (1 n 2) = 2 * (1 + 1) n (1 + 2) = 0. 

The following expression involving multiplication holds 
generally: 

(a u b ) c = ac kj bc and (ar>b) c — ac r> be. 

With multiplication by c all arrows in the figures for a, b, a^j b, 
ar\b are replaced by the figure for c; the unions and intersections as 
such remain unchanged. 

In general however: 

a(b u c) * ab kj ac and a(b n c) * ab n ac. 

This can be seen from the examples: 

2 ( l u 2 ) = {2, {2}}* 2- I u 2 - 2 = {1, 3} and 
2 (1 n 2) = 2 ^ 2 • 1 n 2 • 2 = 0, 
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One can form the union and intersection of arbitrarily large 
finite collections. If Zj, j =1, 2, ..., k, are finitely many numbers then 
KJZj signifies their union, that is the number which possesses 
precisely all the elements of the numbers Zj as its elements, and nz-
signifies their intersection, that is the number which possesses 
precisely all the elements which are common to all the numbers Zj as 
its elements. 

The following proposition constitutes an application: If ej are the 
elements of a number a 0, then the product ab is equal to 
u(6+ ejb). 

For the formation of the figure ab all arrows in the figure for a 
had to be replaced by the figure for b; thus, in particular, those 
arrows leading from the point a to the elements e. The elements ej 
themselves are then multiplied by b, that is replaced by ep. The 
product ab is then the union of all the numbers 6 + efi. 

From this and the relation 0 • b = 0 there follows an inductive 
definition of multiplication: If the product ab is already defined for 
sets a up to a certain depth, then the proposition above yields the 
definition of ab for the numbers a whose depth is one greater. 
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First published as: "Zur Goldbachschen Vermutung", Elemente der Mathematik 20 
(1965), 121-122 (MR 32, 7528). 

On the Goldbach Conjecture 

A natural number n always has a unique predecessor; it is either 
n - 1 or 0. The word "predecessor" will be understood to mean 
"immediate predecessor". This is the fundamental concept in the 
theory of the natural numbers. If one takes "successor" as the basic 
concept and then postulates the existence of a sucessor to every 
natural number, one requires there to be an infinitely many 
numbers; the existence of such an infinite collection is not at all easy 
to prove. 

Now, let generalized numbers (to be called simply numbers) have 
an arbitrary, finite number of predecessors (perhaps none). These 
predecessors are also generalized numbers. When "counting 
backwards" through these numbers one ultimately arrives at 0, a 
number which is without predecessors. Numbers having the same 
predecessors are identical. 

We can obtain a directed graph for each number by taking the 
generalized numbers themselves as points and directing an edge 
from a number toward each of its immediate predecessors. The 
resulting graph is to contain not only the immediate predecessors of 
a number but its distant predecessors as well, that is the 
predecessors, predecessors of predecessors, etc. When the edges are 
directed downwards the number itself is represented as the top point 
of the diagram; and 0 is at the bottom. 

It has been shown in Finsler [1963] that generalized numbers 
can be "added" and "multiplied" in a natural way by combining the 
associated graphs. This produces a generalized number theory, 

The graph of the sum a + 6 of two numbers a and b is obtained by 
"hanging" the diagram of b onto that of a so that the bottom point of 
a coincides with the top point of b. 

The figure for the produet a • b of two numbers ci and b is 
obtained by replacing each edge in the graph of a with the graph of b 
where the graphs are similarly oriented. After carrying out this 
"substitution" one identifies points and edges that are associated 
with identitical numbers. This identification was not carried out in 
"Totally Finite Sets", Finsler [1963], Certain alterations are therefore 
necessary here. For example, we have that: 

2 • 2 = {0, 1} • 2 = {1, 3} = {0, 2} + 1. 
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Taking a number to be the set of its predecessors, the numbers 
are made to correspond to "totally finite sets". The number 0 is the 
empty set; the number 1 is the set whose sole element is 0, that is 
whose only predecessor is 0; the natural number 2 is the set which 
has 1 as its sole element. In contrast to this the ordinal number 2 is 
a set with two elements, 0 and 1, that is to say 2 = {0, 1}. 

Prirne numbers are those numbers which are different from 1 
which cannot be represented as the product of two other numbers 
which are different from 1. 

One can enumerate the numbers (cf. Finsler [1963]) and one 
quickly finds that prime numbers dominate the list strongly: Among 
the first 265536 numbers only six are not prime numbers. 

It is remarkable that the analog of the Goldbach conjecture fails 
for the generalized numbers in spite of this abundance of primes. 

Twice a number which is different from 0 and 1 is not necessarily 
the sum oftwo primes. 

Doubles of the numbers 2 • 2 and 2 • 2 offer simple counter-
examples, where 2 is the ordinal number two, {0, 1}. It can readily be 
seen from the diagrams for these two numbers that their 
representations as sums of two numbers different from 0 are the 
following: 

2 + 3 • 2, or 2 • 2 + 2 • 2, or 3 • 2 + 2, and finally 2 - 2 + 2 - 2 . 

None of these is a sum of two primes. 
Twice the number 2 • 2 is, however, the sum of two prime 

numbers; it is 

2 • 2 • 2 = {0, 2} + {{1, 3}}. 

These two terms are of depth 2 and 5 respectively and hence are 
prime. 

It follows that the ordinary Goldbach conjecture cannot be 
proven for the natural numbers using only those general principles 
of addition and multiplication which they share with the generalized 
numbers. 

This counterexample is connected with the fact that there are 
"mononumbers" different from 1 among the generalized numbers. 

Mononumbers are those numbers different from 0 which cannot 
be represented as the sum of two numbers different from 0. 

The ordinal 2 is a mononumber, and so is any number of the 
form {0, n} where n is a natural number. Thus there are infinitely 
many mononumbers. 



On the Goldbach Conjecture Zöy 

Four times a mononumber a which is different from 1 is never 
the sum of two primes, since it has only these decompositions: 

a + 3 • a, or 2 • a + 2 • a, or 3 • a + a. 

It follows that there are infinitely many non-Goldbach numbers. 





BIBLIOGRAPHY 

Papers in this volume are marked with a *. 

ACKERMANN, W. 1924 Begründung des "tertium non datur" mittels 
der Hilbertschen Theorie der Widerspruchsfreiheit. Mathematische 
Annalen 93, 1-36. 

- 1937 Die Widerspruchsfreiheit der allgemeinen Mengenlehre. 
Mathematische Annalen 114, 305-315. 

- 1956 Zur Axiomatik der Mengenlehre, Mathematische Annalen 
131, 336-345. 

ACZEL, P. 1988 Non-Well-Founded Sets. Stanford: Center for the 
Study of Language and Information (CSLI lecture notes; No. 14). 

ALKOR, C. 1982 Constructibility in Ackermann's Set Theory. Diss. 
Math. 196. Polska Akad. Nauk., Warsaw. 

BAER, R. 1928a Über ein Vollständigkeitsaxiom in der Mengenlehre. 
Mathematische Zeitschrift 27, 536-539. 

- 1928b Bemerkungen zur Erwiderung von P. Finsler. 
Mathematische Zeitschrift 27, 543. 

BARWISE, J. 1988 The Situation in Logic -IV: On the Model Theory 
of Common Knowledge. Center for the Study of Language and 
Information, Stanford. 

BARWISE, J. / ETCHEMENDY, J. 1987 The Liar. An Essay on Truth 
and Circularity. Oxford: Oxford University Press. 

BARWISE, J. / MOSS, L. 1991 Hypersets. The Mathematical 
Intelligencer 13, 31-41. 

BENACERRAF, P. / PUTNAM, H. 1964 Philosophy of Mathematics, 
Selected Readings; Englewood Cliffs (N.J.): Prentice Hall. (Second 
revised edition: Cambridge: Cambridge University Press 1983) 

BERNAYS, P. 1922 Über Hilberts Gedanken zur Grundlegung der 
Arithmetik. Jahresberichte der Deutschen Mathematiker-
Vereinigung 31, 10-19. 

- 1941 Sur les questions methodologiques actuelles de la theorie 
hilbertienne de la demonstration. In: Gonseth (ed.) [1941, 144-
152]; Discussion, ibid. 153-161. 



262 Finsler Set Theory 

- 1946 (Review of Gödel [1944]) The Journal of Symbolic Logic 11, 
75-79. 

- 1956 Zur Diskussion des Themas "Der Platonische Standpunkt in 
der Mathematik". Dialectica 10, 262-265. Reprinted in: Finsler 
[1975, 148-151], 

BERNSTEIN, F. 1938 The Continuum Problem. Proceedings ofthe 
National Academy of Science (U.S.A.) 24, 101-104. 

BIRKHOFF, G. 1937 An Extended Arithmetic. Duke Mathematical 
Journal 3, 311-316. 

- 1942 Generalized Arithmetic. Duke Mathematical Journal 9, 283-
302. 

BOOTH, D. 1990 Hereditarily Finite Finsler Sets. The Journal of 
Symbolic Logic 55, 700-706. 

- 1991 Logical Feedback. Studia Logica L, 2, 225-239. 

BREGER, H. 1992 A Restoration that Failed: Paul Finsler's Theory 
ofSets. In: D. Gillies (ed.), Revolutions in Mathematics, Oxford: 
Clarendon, 249-264. 

BURCKHARDT, J. J. 1938 Zur Neubegründung der Mengenlehre. 
Jahresberichte der Deutschen Mathematiker-Vereinigung 48, 146-
165. 

- 1939 Zur Neubegründung der Mengenlehre. Folge. Jahresberichte 
der Deutschen Mathematiker-Vereinigung 49, 146-155. 

BURALI-FORTI, C. 1897 Una questione sui numeri transfmiti. 
Rendiconti del Circolo Matematico di Palermo 11, 154-164. 
(English translation: van Heijenoort [1967, 105-111].) 

CARNAP, R. 1934 Die Antinomien und die Unvollständigkeit der 
Mathematik. Monatshefte für Mathematik und Physik 41: 263-283. 

CERESOLE, P. 1915 L'irreductibilite de l'intuition des probabilites 
et l'existence de propositions mathematiques indemonstrables. 
Archives de psychologie 15, 255-305. 

CHURCH, A. 1946 (Review of Finsler [1944]) The Journal of 
Symbolic Logic 11, 131-132. 

DAVIS, Robert L. 1943 The Number of Finite Relations. Proceedings 
of the American Mathematical Society 4, 486-494. 



Bibliograph) ' 263 
DAWSON, J.W. 1984 The Reception of Gödel's Incompleteness 

Theorems. Philosophy of Science Association 2. Reprinted in: 
Shanker [1988, 74-95], 

DEDEKIND, R. 1918 Was sind und was sollen die Zahlen ? 
Braunschweig: Vieweg (4th ed.). 

FEFERMANN, S. 1988 Kurt Gödel: Conviction and Caution. In: 
Shanker [1988, 96-114], 

*FINSLER, P. 1925 Gibt es Widersprüche in der Mathematik? 
Jahresberichte der Deutschen Mathematiker-Vereinigung 34, 143-
155 = Finsler [1975, 1-10]. 

*- 1926a Formale Beweise und die Entscheidbarkeit. Mathematische 
Zeitschrift 25, 676-682 = Finsler [1975, 11-17]. (English 
translation with commentary: van Heijenoort [1967, 438-445].) 

*- 1926b Über die Grundlegung der Mengenlehre. Erster Teil. Die 
Mengen und ihre Axiome. Mathematische Zeitschrift 25, 683-713 = 
Finsler [1975, 19-49], 

- 1927a Über die Grundlegung der Mathematik. Jahresberichte der 
Deutschen Mathematiker-Vereinigung 36, 18 = Finsler [1975, 18]. 

*- 1927b Über die Lösung von Paradoxien. Philosophischer Anzeiger 
2, 183-192 = Finsler [1975, 57-66], 

- 1927c Antwort auf die Entgegnung des Herrn Lipps. 
Philosophischer Anzeiger 2, 202-203 = Finsler [1975, 69-70], 

- 1928 Erwiderung auf die vorstehende Note des Herrn R. Baer. 
Mathematische Zeitschrift 27, 540-542 = Finsler [1975, 53-55]. 

*- 1933 Die Existenz der Zahlenreihe und des Kontinuums. 
Commentarii Mathematici Helvetici 5, 88-94 = Finsler [1975, 71-
77], 

- 1941a (Remarks in the discussion concerning Bernays [1941]). In: 
Gonseth (ed.) [1941, 153-161], 

*- 1941b A propos de la discussion sur les fondements des 
mathematiques. In: Gonseth (ed.) [1941, 162-180] = Finsler [1975, 
78-96], 

*- 1944 Gibt es unentscheidbare Sätze? Commentarii Mathematici 
Helvetici 16, 310-320 = Finsler [1975, 97-107], 



264 Finsler Set Theory 

- 1951 Eine transfinite Folge arithmetischer Operationen. 
Commentarii Mathematici Helvetici 25, 75-90 = Finsler [1975, 
108-123], 

- 1953 Uber die Berechtigung infinitesimalgeometrischer 
Betrachtungen. Convegno Internazionale di Geometria 
Differenzictle, Italia 1953, 8-12 = Finsler [1975, 124-128], 

*- 1954 Die Unendlichkeit der Zahlenreihe. Elemente der 
Mathematik 9, 29-35 = Finsler [1975, 129-135], 

*- 1956a Der platonische Standpunkt in der Mathematik. Dialectica 
10, 250-255 = Finsler [1975, 136-141]. 

*- 1956b Und doch Piatonismus. Dialectica 10, 266-270 = Finsler 
[1975, 152-156], 

- 1956c Briefwechsel zwischen P. Lorenzen und P. Finsler. 
Dialectica 10, 271-277 = Finsler [1975, 157-163], 

*- 1963 Totalendliche Mengen. Vierteljahresschrift der 
Naturforschenden Gesellschaft in Zürich 108, 141-152 = Finsler 
[1975, 164-175], 

*- 1964 Uber die Grundlegung der Mengenlehre. Zweiter Teil. 
Verteidigung. Commentarii Mathematici Helvetici 38, 172-218 = 
Finsler [1975, 176-222], 

*- 1965 Zur Goldbachschen Vermutung. Elemente der Mathematik 
20, 121-122 = Finsler [1975, 223-224], 

- 1969 Über die Unabhängigkeit der Kontinuumshypothese. 
Dialectica 23, 67-78. 

- 1975 Aufsätze zur Mengenlehre (ed. by G. Unger). Darmstadt: 
Wissenschaftliche Buchgesellschaft. 

FRAENKEL, A. 1922a Zu den Grundlagen der Cantor-Zermeloschen 
Mengenlehre. Mathematische Annalen 86, 230-237. 

- 1922b Der Begriff "definit" und die Unabhängigkeit des 
Auswahlaxioms. Sitzungsberichte der Preussischen Akademie der 
Wissenschaften (1922), 253-257 (English translation: van 
Heijenoort [1967, 284-289]). 

- 1923 Einleitung in die Mengenlehre. Berlin: Springer (2nd ed.) 

- 1925 Untersuchungen über die Grundlagen der Mengenlehre. 
Mathematische Zeitschrift 22, 250-273. 



Bibliograph)' 2 6 5 

- 1926 Die Gleichheitsbeziehung in der Mengenlehre. Journal für 
die reine und angewandte Mathematik 157, 79-81. 

- 1928a (Review of Baer [1928a]) Jahrbuch Fortschritte der 
Mathematik 54, 90. 

- 1928b (Review of Finsler [1928]) Jahrbuch Fortschritte der 
Mathematik 54, 90. 

- 1928c (Review of Baer [1928b]) Jahrbuch Fortschritte der 
Mathematik 54, 90. 

- 1928c Einleitung in die Mengenlehre. Berlin: Springer (3rd ed.) 

FRAENKEL, A. / BAR-HILLEL, Y. 1958 Foundations of set theory. 
Amsterdam/New York/Oxford: North Holland. 

FRAENKEL, A. / BAR-HILLEL, Y. / LEVY, A. 1973 Foundations of 
set theory. Amsterdam/New York/Oxford: North Holland (Second 
revised edition). 

FREGE, G. 1884 Die Grundlagen der Arithmetik. Breslau. 

- 1893 Grundgesetze der Arithmetik, Vol. I. Jena. 

- 1903 Grundgesetze der Arithmetik, Vol. II. Jena. 
GEULINCX, A. 1663 Methodus inveniendi argumenta. In: Arnoldi 

Geulincx Antverpiensis Opera Philosophica, rec. J.P.N. Land, Vol. 
II (1892), p. 25. 

GODDARD, L. / JOHNSTON, M. 1983 The Nature of Reflexive 
Paradoxes: Part I, Notre Dame Journal of Formal Logic 24: 491-
508. 

GÖDEL, K. 1931 Über formal unentscheidbare Sätze der Principia 
Mathematica und verwandter Systeme I. Monatshefte für 
Mathematik und Physik 37, 173-198. 

- 1938 The consistency of the axiom of choice and of the generalized 
continuum-hypothesis. Proceedings of the National Academy of 
Sciences (U.S.A.) 24, 556-557. 

- 1944 Russell's Mathematical Logic. In: P. Schilpp (ed.), The 
Philosophy of Bertrand Russell Evanston-Chicago: Northwestern 
University Press, 123-153. Reprinted in: Benacerraf/Putnam 
[1964, 211-232; 1983, 447-469], 

- 1964 What is Cantor's continuum problem? In: BenacerrafTPutnam 
[1964, 258-273; 1983, 470-485]. 



266 Finsler Set Theory 

GONSETH, F. (ed.) 1941 Les entretiens de Zürich sur les fondements 
et la methode des sciences mathematiques, 6-9 decembre 1938. 
Zürich: Leemann freres & Cie. 

GRELLING, K. / NELSON, L. 1908 Bemerkungen zu den Paradoxien 
von Russell und Burali-Forti. Abhandlungen der Fries'sehen 
Schule, Neue Folge, Band II, Heft 3: 301-324. In: L. NELSON, 
Beiträge zur Philosophie der Logik und Mathematik. Frankfurt am 
Main: Verlag Öffentliches Leben 1959, pp. 59-77. 

GREWE, R. 1969 Natural Models of Ackermann's Set Theory. 
Journal of Symbolic Logic 34, 481-488. 

GROSS, H. 1971 Nachruf: Paul Finsler [with complete bibliography 
of Finsler's papers]. Elemente der Mathematik 26, 19-21 = Finsler 
[1975; IX-X, 241-242], 

- 1975 Geleitwort [Preface to:] Finsler [1975, VII-VIII]. 
GUT, B. 1979 Inhaltliches Denken und formale Systeme. Oberwil: 

Verlag Rolf Kugler. 

HEIJENOORT, J. VAN (ed.) 1967 From Frege to Gödel- A source 
book in mathematical logic 1879-1931. Cambridge (Mass.): 
Harvard University Press. 

HILBERT, D. 1900 Mathematische Probleme. Vortrag, gehalten auf 
dem internationalen Mathematiker-Kongress zu Paris 1900. 
Nachrichten von der Königlichen Gesellschaft der Wissenschaften 
zu Göttingen (1900), 253-297 = Gesammelte Abhandlungen, Vol. 3, 
290-329. 

- 1913 Grundlagen der Geometrie. Leipzig/Berlin: Teubner (4th ed.). 
Appendix VT: Über den Zahlbegriff. 

- 1922 Neubegründung der Mathematik. (Erste Mitteilung). 
Abhandlungen aus dem Mathematischen Seminar der 
Hamburgischen Universität 1, 157-177. 

- 1923 Die logischen Grundlagen der Mathematik. Mathematische 
Annalen 88, 151-165. 

- 1926 Uber das Unendliche. Mathematische Annalen 95, 161-190. 
(English translation: van Heijenoort [1967, 367-392]). 

HILBERT, D. / BERNAYS, P. 1934/39 Grundlagen der Mathematik. 
Berlin: Springer, Bd. I: 1934, Bd. II: 1939. 

HINTIKKA, K. J. 1957 Vicious Circle Principle and the Paradoxes. 
Journal of Symbolic Logic 22, 245-249. 



Bibl iograph) ' 2 6 7 

HÖSLE, V. 1986 Die Transzendentalpragmatik als Fichteanismus 
der Intersubjektivität. Zeitschrift für philosophische Forschung 40: 
235-252. 

HUGHES, G. E. 1982 John Buridan on Self-reference. Cambridge: 
Cambridge University Press. 

KESSELRING, T. 1984 Die Produktivität der Antinomie. Frankfurt 
am Main: Suhrkamp. 

KLEENE, S.C. / ROSSER, J.B. 1935 The inconsistency of certain 
formal logics. Annais of Mathematics 36, 630-636. 

KREISEL, G. 1954 (Review of Finsler [1954]). Mathematical Reviews 
15, 670. 

LAKE, J. 1975 Natural Models and Ackermann-Type Set Theories. 
Journal of Symbolic Logic 40, 151-158. 

LEVY, A. 1959 On Ackermann's Set Theory. Journal of Symbolic 
Logic 24, 154-166. 

LIPPS, H. 1923 Die Paradoxien der Mengenlehre. Jahrbuch für 
Philosophie und Phänomenologische Forschung 6, 561-571. 

- 1927 Entgegnung. Philosophischer Anzeiger 2, 193-201. 
LORENZEN, P. 1955 (Review of Finsler [1954]). Zentralblatt der 

Mathematik 55, 46. 

- 1956 Briefwechsel zwischen P. Lorenzen und P. Finsler. Dialectica 
10, 271-277. Reprinted in: Finsler [1975, 157-163], 

MAZZOLA, G. 1969 Finslersche Zahlen. Commentarii Mathematici 
Helvetici 44, 495-501. 

- 1972 Der Satz von der Zerlegung Finslerscher Zahlen in 
Primfaktoren. Mathematische Annalen 195, 227-244. 

- 1973 Diophantische Gleichungen und die universelle Eigenschaft 
Finslerscher Zahlen. Mathematische Annalen 202, 137-148. 

MIRIMANOFF, D. 1917a Les antinomies de Russell et de Burali-
Forti et le probleme fondamental de la theorie des ensembles. 
L'enseignement Mathematique 19, 37-52. 

- 1917b Remarques sur la theorie des ensembles et les antinomies 
Cantorienns, - I. L'enseignement Mathematique 19, 209-217. 

- 1920 Remarques sur la theorie des ensembles et les antinomies 
Cantorienns, - II. L'enseignement Mathematique 21, 29-52. 



268 Finsler Set Theory 

NELSON, E. 1986 Predicative Arithmetic. Princeton: Princeton 
University Press. 

NEUMANN, J. VON 1925 Eine Axiomatisierung der Mengenlehre. 
Journal für die reine und angewandte Mathematik 154, 219-240 
und 155, 128 (English translation: van Heijenoort [1967, 393-
413]). 

- 1928 Die Axiomatisierung der Mengenlehre. Mathematische 
Zeitschrift 27, 669-752. 

QUINE, W. V. 1962 Paradox. Scientific American 206: 84-96. 

RAMSEY, F. P. 1926 The foundations of mathematics. London 
Mathematical Society, Proceedings, 2nd Series 25: 338-384. 

REINHARDT, W. 1970 Ackermann's Set Theory Equals ZF. Annais 
of Mathematical Logic 2, 149-249. 

RICHARD, J. 1905 Les principes des mathematiques et la probleme 
des ensembles. Revue generale des sciences pures et appliquees 16, 
541. 

RÖSCHERT, G. 1985 Ethik und Mathematik. Stuttgart: Freies 
Geistesleben. 

RUSSELL, B. 1908 Mathematical logic as based on the theory of 
types. American Journal of Mathematics 30: 222-262. 

SCOTT, D. 1960 A Different Kind of Model for Set Theory. 
Unpublished paper read at the International Congress of Logic and 
Method, Stanford. 

SHANKER, S.G. (ed.) 1988 Gödel's Theorem in Focus. London- New 
York-Sydney: Croom Helm. 

SKOLEM, T. 1922 Einige Bemerkungen zur axiomatischen 
Begründung der Mengenlehre. Proceedings ofthe 5th 
Scandinavian Math. Congr., Helsinki 1922, 217-232 (English 
translation: van Heijenoort [1967, 290-301]). 

- 1926 (Review of Finsler [1926b]) Fortschritte der Mathematik 52, 
192-193. 

SPECKER, E. 1954 Die Antinomien der Mengenlehre. Dialectica 8, 
234-244. 

TARSKI, A. 1935 Der Wahrheitsbegriff in den formalisierten 
Sprachen, Studia Philosophica (1935), 261-405. 



Bibl iograph) ' 2 6 9 

UNGER, G. 1975a Vorwort des Herausgebers zu Paul Finslers 
Aufsätze zur Mengenlehre. In: Finsler [1975, XI-XVI]. 

- 1975b Referat der Arbeit über ein Vollständigkeitsaxiom in der 
Mengenlehre von Reinhold Baer, Freiburg. In: Finsler [1975, 50-
52], 

- 1989 Die Rettung des Denkens. Stuttgart: Freies Geistesleben (2nd 
ed.). 

VARDY, P. 1979 Some remarks on the relationship between Russell's 
Vicious-Circle Principle and Russell's paradox. Dialectica 33, 3-19. 

VIELER, H. 1926 Untersuchungen über die Unabhängigkeit und 
Tragweite der Axiome der Mengenlehre usw., Diss. Marburg. 

WANDSCHNEIDER, D. 1993 Das Antinomienproblem und seine 
pragmatische Dimension. In: H. Stachowiak (ed.): Pragmatik: 
Handbuch des pragmatischen Denkens, Vol. IV: Sprachphilosophie, 
Sprachpragmatik und formative Pragmatik (Hamburg: Meiner 
1993), p. 320-352. 

WEBB, J.C. 1980 Mechanism, Mentalism, and Metamathematics. An 
Essay in Finitism. Dordrecht: Reidel. 

WEYL, H. 1946 Mathematics and Logic. The American Mathematical 
Monthly 53, 2-13. 

WITTENBERG, A. 1953 Über adäquate Problemstellungen in der 
mathematischen Grundlagenforschung. Dialectica 7, 232-254. 

- 1956 Warum kein Piatonismus? Eine Antwort an Herrn Prof. 
Finsler. Dialectica 10, 256-261. Reprinted in: Finsler [1975, 142-
147], 

WITTENBERG, A. et al. 1954 (Discussion of Wittenberg [1953]). 
Dialectica 8, 145-157. 

ZERMELO, E. 1908 Untersuchungen über die Grundlagen der 
Mengenlehre I. Mathematische Annalen 65, 261-281 (English 
translation: van Heijenoort [1967, 199-215]). 

ZIEGLER, R. 1995 Selbstreflexion. Studien zur Selbstbeziehbarkeit 
im Denken und Erkennen. Dornach: Verlag am Goetheanum. 





INDEX 

Absolute 
- consistency 8ff., 68ff„ 76, 104, 133, 

142f., 198f. 
-decidabi l i ty 66ff. 
- logic 104, 120, 198 
- truth 39,162f. 
- undecidability 64f., 67ff., 70 

Accessibility 218 
ACKERMANN, Wilhelm 50f„ 76, 81, lO l f f . 
ACKERMANN Set Theory 81 
ACZEL, Peter viii, 27, 88, 90, 92, 215, 218f., 

222ff., 235f. 
Adjacency matrix 221 
ALKOR, C. 101 
Allmenge 48f., 100ff., 103, 118f., 178 
Anti-Foundation Axiom 215, 223 
Antinomies, see Paradox 
ARCHIMEDEAN Order 184f., 187f. 
Arithmetic 

consistency of - 43, 49 
incompleteness of - 8f., l l f . , 63ff. 

Axiom I, II, III, see FINSLER Set Theory 
Axiom of Choice, see Choice, Axiom of 
Axiom of Foundation, see Foundation, 

Axiom of 
Axiomatic method 43 
Autological, see also Paradox of 

GRELLING-NELSON 31ff., 57ff. 

ß, see Beta relation 
BAER, Reinhold 93ff., 133, 144, 172ff., 

187ff., 193 
BARWISE, Jon 14, 21f„ 24, 26f., 92 
BERNAYS, Paul viii, 50, 63, 67, 73., 80f., 98, 

101f., 104, 108f„ 143,147, 189, 192 
BERNSTEIN, Felix 91ff. 
Beta relation 86, 105, U l f . , 132, 153f., 

156f„ 173ff., 183f. 
Binomial coefficients 226ff. 
BIRKHOFF, Garrett 213 
BOLZANO, Bernhard 152 
BROUWER, Luitzen E. J. 42 ,103 
BURALI-FORTI paradox, see Paradox 
BURCKHARDT, Johann J. 149 
BURIDAN 31 

BURNSIDE's theorem 234 

CANTOR, Georg vii, 3, 41, 46ff„ 52, 59, 71, 
101, 118f„ 131, 192, 213 

CANTOR's diagonal method 52ff., 118f. 
CARNAP, Rudolf 16f. 
CERESOLE, Pierre 72 
Choice, axiom of 85, 128ff., 131f., 139ff., 209 
Circular definition 47ff„ 60f., 99ff., 106f., 

134f„ 199ff. 
Class 59ff., 79f., 86f., 107f., 137, 191f., 195 
Communication 6f. 
Completeness, Axiom of, see 

FINSLER Set Theory, Axiom III 
Comprehension, Axiom of 41 
Conceptual, see Platonism 
Consistency of Set Theory 95ff., 117f. 
Constructibility 166f„ 183f. 
Continuum hypothesis 71, 91 
Contradiction 15f., 39ff. 

analytic - 16, 36ff. 
pragmatic - 16, 36ff. 

Content, explicit and implicit 7, 12, 66ff., 71 

DAVIS, Robert 234 
DAWSON, John 9, l l f . 
DEDEKIND, Richard 130f., 152 
Definite properties 123, 128f., 208f. 
Depth 241ff. 
Diagonal method, see 

CANTOR's diagonal method 
Distinction 16 
District 232 

Equation, set theoretic 231f. 
Essential 112, 174f., 216, 241 
ETCHEMENDY, John 14, 21f., 24, 26f., 92 
EUCLID 165, 167 
Excluded middle 42, 66f„ 103f. 
Existence, mathematical 3, 75,169f„ 193ff. 
Extensional graph 221ff. 

FEFERMANN, Solomon 9 , 1 2 
FIBONACCI-FINSLER sets, see 

FINSLER-FIBONACCI sets 



Finitism 91., 86 
FINSLER-FIBONACCI sets 89f., 92, 113, 175, 

178, 215ff„ 224, 229ff. 
FINSLER's ladder 216,239 
FINSLERSet Theory 

Axiom I (Relation) 87, 110,118f., 
143f., 157,173ff., 192f., 206f. 

Axiom II (identity) 88ff., 110, 175ff., 
219ff., 222 

First version 88ff„ 110, 144, 
175ff., 219ff, 

Second version 91ff., 157,177f„ 
193, 219ff., 223 

Axiom III (Completeness) 93ff., 102, 
110, 116f., 144, 148, 157, 
179ff., 187ff., 193, 196f. 

Firm graph 232 
Formalism 10, 43, 50ff., 66,102, 162f., 

166f. 
Formal 

- consistency 50ff., 142f. 
- decidability 8ff„ 50ff„ 63, 190 
- definability 3ff., l l f . , 51ff., 100, 

121f. 
- provability, see - decidability 
- representation, see - definability 

Foundation, Axiom of 215 
FRAENKEL, Abraham 94f„ 103, 108,123, 129, 

131, 177, 188f., 192f. 
FREGE, Gottlob 133, 152,163 

Generating function 226ff. 
GEROLD, Bernd 38 
GEULINCX, Arnold 66 
GODDARD, Leonhard. 18 
GÖDEL, Kurt vii, 4, 8ff„ 63ff„ 141ff„ 146 
GOLDBACH conjecture 213f., 257ff. 
GONSETH, Ferdinand 139, 150 
Graphs of sets 216ff. 
GRELUNG-NELSON paradox, see Paradox 
GREWE, Rudolf 102 
GROSS, Herbert 98, 102 

HAUSDORFF, Felix 213 
Heterological, see Autological 
HILBERT, David 3, 43, 50, 67f., 70, 104, 

109f., 168,184, 187, 209 
HINTIKKA, Jaakko 97 
HÖSLE, Vittorio 16 
HUGHES, G. E. 31 

Identity, Axiom of, see 
FINSLER Set Theory, Axiom II 

Identity of sets, see 
FINSLER Set Theory, Axiom II 

ACZEL's criterion, see FINSLER Set 
Theory, Axiom II, Second Version 

Liberal criterion, see FINSLER Set 
Theory, Axiom II, Fist Version 

Strict criterion, see FINSLER Set 
Theory, Axiom II, Second Version 

Impredicative, see Predicative 
Inaccessible cardinal 102 
Induction 154ff. 
Infinity 39f„ 144,152ff„ 163f. 
Infinity, Axiom of 85f., 101, 130f., 137f., 

160, 163ff., 171ff., 206 
Informal conception 4 
Incompleteness of arithmetic, see Arithmetic 
Intersection 116,198f., 254ff. 
Intrinsic analysis 14 
Isomorphism, see FINSLER Set Theory, Axiom II 

Johnston, Mark 18 
V-Set 92, 101,112, 114f., 215, 227 

KESSELRING, Thomas 24,38 
KLEENE, Stephen 64 
KÖNIG, Julius 42 
KÖTHE, Gottfried 176 
Knot 248f. 
KREISEL, Georg 76 

LAKE, John 102 
Large cardinals 131 
Layer sequence 225ff. 
Level of a set 220ff. 
LEVY, Azriel 101 
Liar paradox, see Paradox 
Linguistic, see Formal 
LIPPS, Hans 56f., 62 
Logic 168f„ 208f. 
LORENZEN, Paul 77 

MAZZOLA, Guerino 97, 214 
Metalanguage, Metamathematics 5f., 8ff. 
MEYER, Thomas 38 
MIRIMANOFF, Dimitry 87, 126, 215 
Mononumber 247ff„ 258 
MOSER, Werner A. 17,38 



Natural Models 102 
Natural Numbers, see also PEANO arithmetic 

152ff„ 164f. 
NELSON, Edward 86 
Non-well-founded sets, see Sets 

Object language 5f., 8ff. 
Ontology of concepts 15, 31ff. 
Ordinal number 146, 218f., 225ff„ 242 

C i r c u l a r - 102 ,206 
G r e a t e s t - see also Paradox, 

BURALI-FORTI 164 
Layer sequence of - 226ff. 
m i r a g e o f - 237 

Paradox i s f f . 
BURALI-FORTI - 62, 85, 88, 135, 

146, 149f„ 156f., 164 
CANTOR's - 88, 118f. 
- of finite definability 7, 26, 40ff., 

44ff„ 51ff., 59, 147, 150f. 
- o f GRELLLING-NELSON 32ff., 

56ff. 
Intrinsic analysis o f - 14ff. 
L i a r - 7, l l f . , 16ff., 65ff., 170 
Liar cycle - 16ff. 
Logical - 7, 15, 31ff., 34ff. 
RUSSELL's - 36, 40f„ 46ff„ S9ff„ 87, 

93, 95, 105,19 l f . 
Semantic - 7, 11, 15, 2 l f . 

PASCAL's triangle 227 
Path 218f. 
PEANO arithmetic 135ff., 152ff„ 165f. 
Platonism 3ff., 73ff., 78ff. 
POINCARE, Henri 41 
Predicable, see also Paradox of 

GRELLING-NELSON 52 
Prime 251ff., 258 
Predicative 31ff„ 98, 199, 207f. 
Proposition 

descriptive - 26ff. 
conceptual - 28ff. 

Provability 66ff. 
Pseudo-ordinal 223 
Pure concepts, see Platonism 

QUINE, Willard V . O . 14 

RAMSEY, Frank P. 15 
REINHART, Will iam 101 
Relation, Axiom of, see 

FINSLER Set Theory, Axiom I 

RENSHAW, David ix 
Restriction, Axiom of 103, 129 
RICHARD's paradox, see 

Paradox of finite definability 
R o o t o f a graph 218ff. 
ROSSER, J. Barkley 64 
RUSSELL, Betrand 7, 32, 37, 40, 42, 59 
RUSSELL's class 7 

I , see System and Allmenge 
Z* 120f. 
SCOTT, Dana 91f., 220, 224, 233 
Self-reference 24ff„ 36ff. 
Separation, Axiom of 123 
Sets 

Circular and circle-free - 49, 85, 97, 
99ff., 104, 120ff., 137, 158ff., 199ff. 

Cyclic - 200 
Hereditarily finite - 213 
Non-well-founded - 27, 87f., 90ff., 

101, 214, 215ff. 
Pure - 48, 108f., 189 
T o t a l l y f i n i t e - 213, 241ff. 

SKOLEM, Thoralf 79, 103,120, 123,131, 
149, 151, 185, 189ff. 

SKOLEM's paradox 185, 208f. 
SPECKER, Ernst 73, 75, 96ff. 
SPECKER'S objection 75f„ 96ff. 
Symbolic representation, 

see Formal definability 
System 109 

TARSKI, Alfred 66 
Totally finite sets, see Sets 
Transitive 

- set 112, 174 
- closure 89ff., 216, 241f. 
- h u l l 216 

Trees of sets 216ff. 
Truth-value gap 56f., 69f. 
Type theory 36, 42, 47, 138f. 

Unfolding tree 218f. 
UNGER, Georg ix, 93, 98 
Union 115f., 176f., 198f., 254f. 

VAN HEIJENOORT, Jean 8f. 
VARDY, P. 37 
VON NEUMANN, John 103, 142, 192 
VIELER, Heinrich 177 



WANDSCHNEIDER, Dieter 16, 27 
WEBB, Judson 9f. 
WEYL, Hermann 42, 103 
WITTENBERG, Alexander 73f., 79ff. 

ZENO 39 
ZERMELO, Ernst 42, 103,105, 109, 120, 

123,129f., 131, 143, 146,181,188f. , 
208 

ZERMELO Set Theory 42, 48, 104, 
127ff„ 138, 181, 208f. 

ZERMELO-FRAENKEL Set Theory 87, 102, 213 



CHRONOLOGY OF PAUL FINSLER'S LIFE 
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Grammar-school in Urach. 

1908-12 Secondary school in Cannstatt with scientific 
emphasis. 
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others. 
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Erich Hecke, David Hilbert, Felix Klein, Edmund 
Landau, Carl Runge, Ludwig Prandtl, Max Born 
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1918 Promotion to Ph. D. through C. Caratheodory. 
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("Habilitation") at the University of Köln. 

1923 Inaugural lecture at the University of Köln: "Gibt es 
Widersprüche in der Mathematik?" (Are there 
Contradictions in Mathematics?). 

1924 Discovery of a comet. 
1926 The paper "Formale Beweise und Entscheidbarkeit" 

(Formal Proof and Decidability) anticipates the 
conceptual (not formal) core of Kurt Gödels first 
incompleteness theorem from 1931. 
"Über die Grundlegung der Mengenlehre. Erster 
Teil: Die Mengen und ihre Axiome" (On the 
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Research topics: geometry, in particular differential 
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1934 With Elie Cartan's little book "Les espaces de 
Finsler" (Paris: Hermann & Cie 1934) the name 
"Finsler space" becomes common-place in 
differential geometry. 
Finsler spaces or Finsler manifolds are 
generalisations of Riemannian spaces, where the 
general definition of the length of a vector is not 
necessarily given in the form of the square root of a 
quadratic form and where the Minkowskian 
geometry holds locally. 

1937 Discovery of a comet. 
1944 Füll professor in Zürich after the leave of Andreas 

Speiser to the University of Basel. Regulär 
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1946 descriptive geometry again. 

1951 Reprint of the dissertation by Birkhäuser Verlag 
(Basel) with extensive bibliography up to 1949 by 
H. Schubert (Lehrbücher und Monographien aus 
dem Gebiete der exakten Wissenschaften -
Mathematische Reihe, Band 11). 

1958 "Vom Leben nach dem Tode" (On Life after Death). 
Published by an association of scientists on behalf 
of the orphanage in Zürich. 

1959 Retires from active teaching duties and becomes 
honorary professor. 

29. April 1970 Death in Zürich on his way to the Dies Academicus 
at the University of Zürich. 

Sources: 

Peter Stadler (ed.) Die Universität Zürich 1933-1983. Festschrift zur 
150-Jahr-Feier der Universität Zürich (Published by the Rektorat of 
the University of Zürich). Zürich 1983. 
Johann Jakob Burckhardt: Die Mathematik an der Universität Zürich 
1916-1950 unter den Professoren R. Fueter, A. Speiser und P. Finsler. 
Basel: Birkhäuser 1980 (Elemente der Mathematik - Beiheft Nr. 16). 
[Contains more sources and a complete bibliography of Finsler's 
papers.] 
Herbert Gross: "Nachruf Paul Finsler". Elemente der Mathematik, Vol 
26, 1971, pp. 19-21. 





Paul Finsler (1894-1970) had already secured renown 
as a differential geometer when he first took up set theory. 
His work in this field is heir to the spirit of the set theory put 
forward by Cantor who, as Finsler, was an uncompromising 
Piatonist. 

Finsler's papers on set theory are presented, here for the 
first time in English translation, in three parts. Each reflects 
one of the three central concerns of his investigations, namely 
the philosophical, the foundational and the combinatorial 
approach, and each is preceded by an introduction to the 
field written by the editors. 

In the philosophical part of his work Finsler develops his 
approach to the paradoxes, his attitude toward formalized 
theories and his defense of Platonism in mathematics. He 
insisted on the existence of a conceptual realm within mathe-
matics that transcends formal systems. From the foundational 
point of view, Finsler's set theory contains a strengthened 
criterion for set identity and a coinductive specification of the 
universe of sets. The notion of the class of circle free sets 
introduced by Finsler is potentially a very fertile one although 
not very widespread today. Combinatorially, Finsler considers 
sets as generalized numbers to which one may apply arith-
metical techniques. The introduction to this third section of 
the book extends Finsler's theory to non-well-founded sets. 

The present volume makes Finsler's papers on set theory 
accessible at long last to a wider group of mathematicians, 
philosophers and historians of science. A technical back-
ground is not necessary to appreciate the satisfying interplay 
of philosophical and mathematical ideas that charact.erizes 
this work. 


