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There is a rich interweaving of two different types of duality within the five-
dimensional manifold of linear complexes. The first type lies in three-dimensional 
projective space and can, for example, be realised in the polarity relative to a second 
degree surface. The second type, polarity on the universal line quadric, belongs in 
the five-dimensional manifold of linear complexes itself (see Sections 17.4.2 and 
17.4.3).  

Both, the polarity on a surface of second degree and the polarity on the universal 
line quadric are projectivities, specifically involutory correlations. This will not be 
proved here for the polarity on the universal line quadric in the five-dimensional 
manifold of linear complexes. 

There arises a question concerning common invariant figures of both polarities, the 
so called simultaneous invariants. Such an invariant figure must be simultaneously 
invariant under both polarities. This issue will be approached in Section 18.1, and a 
particular invariant system of six complexes, the so-called fundamental complexes, 
will be studied in greater detail in Section 18.2. 

 

18.1 Simultaneous invariants of two polarities 

The question of common invariants of a polarity on a quadratic surface in three-
dimensional projective space and a polarity on the universal line quadric is 
asymmetrical. The first of these polarities takes place in point-plane space, while the 
second has its origin in the five-dimensional manifold of linear complexes and 
throws its light into line space. 

It is necessary to broaden the scope of this investigation in order to be able to seek 
solutions. It will be found that there are a number of solutions, but the question of 
whether all solutions have been found will be left open.  

Let P1 and P2 be two polarities which are generated by two distinct non-degenerate 
surfaces of second degree in three-dimensional projective space. As polarities are 
involutory correlations, the combination of P1 and P2 to P1P2 or P2P1 yields a 
collineation, which need not necessarily be involutory, as can easily be 
demonstrated by counter examples. For simplicity of presentation, it will be 
assumed here that the collineation P1P2 (or P2P1) has four real invariant points and 
four real invariant planes, which are the vertices A, B, C, D and the faces α, β, γ, δ of 
a tetrahedron (Section 2.2.2, class (1a)). Polarity P1 assigns to the vertex A of this 
tetrahedron a plane α', which P2 must assign to the point A. Obviously, A and α' are 
polar relative to both P1 and P2 . This applies in the same way to the remaining 
invariant points B, C, D, to which the planes β', γ', δ' are assigned. The plane point-
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field (BCD) is mapped into itself by the collineation. In each of the polarities P1 and 
P2 the point field (BCD) corresponds to a bundle of planes (β'γ'δ'), whose centre 
point must be an invariant point of the collineation which does not lie in the point 
field. In accordance with the assumptions, it can only be the point A; Similarly, the 
plane (BCD) must be identical to α. (Otherwise P1(A) or P2(A) must lie in the field 
(BCD) and that would only be possible if ABCD was a tangential tetrahedron or P1 
or P2 was a null-polarity; both of these possibilities are excluded by our assumptions 
(see Sections 4.8 and 5.4.) Corresponding results apply for the remaining vertices 
and faces of the tetrahedron, which means that α' = α, β' = β, γ' = γ and δ' = δ. Each 
vertex of the tetrahedron is the pole of the opposite face of the tetrahedron, with 
respect to both P1 and P2. The invariant tetrahedron of a collineation, which is the 
product of two polarities is thus seen to be a polar tetrahedron (Section 4.8) of both 
polarities and thus a simultaneous invariant figure in three-dimensional projective 
space of both polarities. 

According to the fundamental theorem (Theorem 2.2) of the projective geometry of 
three dimensional space, the invariant tetrahedron of a collineation is uniquely 
determined. Otherwise, the collineation would be the identity. It follows that the 
common polar tetrahedron of two polarities is also uniquely determined. Its more or 
less real existence is a consequence of the same theorem (see Section 2.2). 

Argument by analogy allows us to apply what has been demonstrated in three-
dimensional projective space to the five-dimensional manifold of linear complexes. 
Consider P1 and P2, two polarities in the five-dimensional manifold of linear 
complexes. Let one, say P1, be the polarity on the universal line quadric and let the 
other, P2, be a polarity relative to an arbitrarily selected, non-degenerate quadratic 
surface in the five-dimensional manifold of linear complexes. The exact structure of 
this surface and its associated polarity are not significant here. It is only required 
that the polarity assign to each linear complex a 4-manifold (or hyperplane) and 
conversely to each 4-manifold a complex, whereby relationships between the 
associated manifolds which are analogous to those in three-dimensional projective 
space apply. 

The combination of two involutory correlations P1 and P2 to P1P2 or P2P1 yields a 
collineation in the five-dimensional manifold of linear complexes. It will be 
assumed in what follows that this correlation possesses six real invariant linear 
complexes and six real 4-manifolds of linear complexes (or hyperplanes). The 
invariant linear complexes will be designated K1, K2, K3, K4, K5, K6 and the invariant 
4-manifolds will be designated M1, M2, M3, M4, M5, M6. These sets of six invariant 
complexes and invariant 4-manifolds are interrelated in a manner corresponding to 
the interrelationship between the points and planes of a polar tetrahedron. This 
totality is self-polar relative to both second degree structures. Considering the 
universal line quadric, this means: The complex K1 is root complex of the 4-
manifold M1, which contains the complexes K2, K3, K4, K5, K6 and is the intersection 
of the 4-manifolds M2, M3, M4, M5, M6; the complexes K2, K3, K4, K5, K6 are also 
reciprocal or «in involution» (that is, mutually null-invariant, see Chapter 14) to 
complex K1. This applies similarly for all six complexes and 4-manifolds of the 
polar invariant sixfold figure. Accordingly, the six complexes K1, K2, K3, K4, K5, K6 
are pairwise reciprocal. The same applies to the 4-manifolds M1, M2, M3, M4, M5, 
M6, if two 4-manifolds are regarded as being reciprocal precisely when their root 
complexes are reciprocal.  

As invariant elements of a collineation in the five-dimensional manifold of linear 
complexes, the six complexes K1, K2, K3, K4, K5, K6 and the six 4-manifolds M1, M2, 
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M3, M4, M5, M6 are uniquely determined. It follows that they are also uniquely 
determined as the common invariant of two polarities (one of which is the polarity 
with respect to the universal line quadric) in the five-manifold of linear complexes.  

It is evident that the common invariants of a polarity with respect to a second degree 
surface in three-dimensional projective space and polarity with respect to the 
universal line quadric must be line figures, as lines are the only elements which are 
common to three-dimensional projective space and the five-dimensional manifold of 
linear complexes.  

It is reasonable to begin a search for common invariants of these two polarities by 
considering their already known self-polar figures: the polar tetrahedron and the 
polar sextuplet of complexes and 4-manifolds.  

In what follows, only polarities with respect to reguli will be considered, because the 
properties of complexes with respect to surfaces of second degree were only proven 
for reguli (Chapters 8, 13,16). Extension of this study to include other polarities in 
three dimensional space requires systematic application of the theory of imaginary 
elements (see Kötter [1982], Kötter/Stoss [2008]). 

Consider a polar tetrahedron of a regulus R of second degree (Section 4.8). Consider 
the hyperbolic congruences which are generated by each pair of opposite skew edges 
(it will be necessary to consider elliptical congruences if the polar tetrahedron is 
partially imaginary). Linear congruences carry pencils of linear complexes. A 
tetrahedron has three pairs of opposite edges, which are the special complexes of 
three pencils of complexes. Choose one complex from each of these three pencils, 
say K1, K2, K3. The polarity with respect to R assigns uniquely to each of the 
complexes K1, K2, K3 a further complex, say K4, K5, K6. The pencils (K1K4), (K2K5) 
and (K3K6) are now the pencils which were referred to above. This follows 
immediately from Theorem 13.2 and the fact that the common polar lines of a 
regulus of second degree and a complex (or null-polarity) remain unchanged when 
the complex is exchanged with its polar complex with respect to the regulus. 

The structure of six complexes which has been constructed is clearly self polar with 
respect to the regulus R, as this applies to the pair of polar complexes within a 
single pencil. It will be shown below that these six complexes are also polar 
invariant with respect to the universal line quadric. 

All lines which intercept the directrices of the pencil of complexes (K1K4) are 
common lines of the complexes K1 and K4. These directrices are, by construction, 
the opposite edges of the polar tetrahedron of R. The directrices of the pencils 
(K2K5) and (K3K6) belong to these interceptors. It follows that the complexes K1 and 
K4 are reciprocal to the complexes K2, K5, K3, K6, which means that they are 
mutually null-invariant (Theorem 14.2). Correspondingly, the complexes K2, K5 are 
reciprocal to the complexes K1, K4, K3, K6 and K3, K6 to K1, K4, K2, K5. Thus the 
polarity with respect to the universal line quadric maps the system of six complexes 
K1, K2, K3, K4, K5, K6 into itself. So, for example, the pencil of complexes (K1K4) 
maps into a pencil of 4-manifolds, that is, maps into a 3-manifold (K2K5K3K6), as in 
three-dimensional projective space a polarity maps an edge of a polar tetrahedron 
into the pencil of planes which lie in the opposite edge. This establishes that the 
system of six complexes Ki (i = 1, 2, ... ‚6) is polar invariant with respect to both the 
regulus R and the universal line quadric and thus a common invariant of both 
polarities. 

A given regulus R has ∞
3
 associated polar tetrahedra (without proof). It is possible 

to select a complex in each of the pencils in ∞
1
 ways. The three further complexes 
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are then determined uniquely by the polarity with respect to R. It follows that there 
are altogether ∞

3 
polar invariant complexes and thus ∞

6
 such systems of six 

complexes for a given regulus R. The uniqueness which was established for 
invariants of polarities of the same type has been lost. 

A system of six special complexes, whose axes lie in the edges of a polar 
tetrahedron, is likewise a solution to the problem of common invariants of two 
polarities. These special complexes are trivially polar invariant with respect to R as 
they are with respect to the universal line quadric. Each special complex is 
reciprocal to itself and also to those remaining four special complexes whose axes 
intersect its axis. 

The starting point for developing the system of six complexes Ki (i = 1, 2, ... ‚6) 
which has been constructed was a polar tetrahedron, which is known to be polar 
invariant with respect to a regulus of second degree. The result was a system of 
complexes that consisted of six pairwise reciprocal linear complexes which is also 
polar invariant with respect to the universal line quadric. In the next section, the 
argument will be turned around: Given a special type of sextuple of complexes, the 
so called fundamental complexes, which is polar invariant with respect to the 
universal line quadric, what are the simultaneous invariants with a polarity with 
respect to a regulus of second degree? It will be seen that a system of fundamental 
complexes itself constitutes such an invariant.  

 

18.2 Fundamental complexes, fundamental surfaces and fundamental 
tetrahedra  

Definition Fundamental complexes are systems of six pairwise reciprocal linear 
complexes. 

Fundamental complexes which will be designated F1, F2, F3, F4, F5, F6 are by 
definition polar invariant with respect to the universal line quadric. 

Note: The common invariants , K1, K2, K3, K4, K5, K6, of two polarities in the five-
dimensional manifold of linear complexes from section 8.1, one of which was the 
polarity with respect to the universal line quadric constitute a system of fundamental 
complexes. 

Fundamental complexes can most easily be constructed from consideration of a 2-
manifold of complexes. Let F1 be a complex of a 2-manifold B. This 2-manifold B 
contains a complete pencil (1-manifold) of complexes which are reciprocal to F1, as 
a 4-manifold of complexes and a 2-manifold of complexes intersect in a pencil of 
complexes (Table 15.1). The complexes of this pencil can be ordered into involutory 
pairs of reciprocal complexes (Theorem 14.6). If such a pair of reciprocal 
complexes, say F2 and F3, is selected, then the three complexes F1, F2 and F3 are 
pairwise reciprocal. Applying the same procedure in the 2-manifold of root 
complexes B' yields six pairwise reciprocal complexes F1, F2, F3, F4, F5, F6. 

According to Theorem 13.1 a linear complex is self polar with respect to every 
regulus of second degree, in which one of the generating reguli consists of lines of 
the complex. Each of the complexes F1, F2, F3, F4, F5, F6 which have just been 
constructed contains one set of generators of the quadratic surface R determined by 
the polarity produced by the 2-manifold B (Sections 16.2 and 16.3). The 
fundamental complexes are thus common invariants of the polarity with respect to R 
and the polarity with respect to the universal line quadric. This means that they are a 
further solution to the problem of simultaneous invariants of two polarities. Again, 
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the uniqueness which is characteristic of simultaneous invariants of polarities of the 
same type is not present. 

Theorem 18.1 A 2-manifold of complexes and thus a polarity with respect to a ruled 
surface has ∞

6
 systems of fundamental complexes. 

Proof: A 2-manifold B contains ∞
2 

complexes, each of which uniquely determines a 
reciprocal pencil of complexes within this 2-manifold. So ∞

1 
pairs of reciprocal 

complexes can be constructed within these pencils (Theorem 14.6). Thus one arrives 
at ∞

3
 triplets of pairwise reciprocal complexes in the 2-manifold B. Applying the 

same procedure to the 2-manifold of root complexes B' leads to the asserted ∞
6
 

systems of fundamental complexes. 

There are ∞
3  5

 / ∞
3  2

 = ∞
9 

2-manifolds and thus ∞
6
  ∞

9
 = ∞

15 
systems of 

fundamental complexes in the five-dimensional manifold of linear complexes. 

Any three of six fundamental complexes determine a 2-manifold and have a 
common regulus. There are therefore for any given system of six fundamental 
complexes twenty ways to construct a regulus. In this case each 2-manifold of root 
complexes generates the directrices of the reguli which consist of lines common to 
all complexes of the original 2-manifold (Theorem 16.6). Thus, the twenty reguli 
belong to ten ruled surfaces of second degree. These are the ten quadratic surfaces 
which are determined by the ten polarities. These ten polarities are generated by 2-
manifolds each of which is determined by sets of three of the six fundamental 
complexes, because a 2-manifold B and the associated 2-manifold of root 
complexes B' generate the same polarity.  

Definition The ten ruled surfaces of a system of six fundamental complexes are 
called fundamental surfaces. 

By a combinatorial argument, any two of the six fundamental complexes determine 
a linear congruence, of which there are fifteen, with thirty (possibly imaginary) 
directrices. The two directrices of each such congruence are lines which are null 
polar with respect to each complex of the pencil determined by the congruence. 
They are also contained in all complexes which are reciprocal to this complex 
pencil. That is, they all belong to a 3-manifold of complexes. In particular, this 3-
manifold contains the four remaining fundamental complexes. For example, if u and 
v are the two directrices of the congruence (F1F2) generated by the complexes F1 
and F2, they are contained in all six of the congruences which are formed by the 
remaining four complexes F3, F4, F5, and F6, as each of these is reciprocal to both F1 
and F2. Thus the lines u and v are intersected by the twelve directrices of these six 
congruences. (The directrices have always been referred to as being real. More 
detailed considerations show that all results which are presented here also apply 
when the directrices are imaginary. It is then necessary to interpret «intersection” 
and »connection” in the terms of the theory of imaginary elements.) 

The two directrices of each of the congruences (F1F2), (F3F4) and (F5F6) are always 
intersected by the directrices of the other two congruences. It follows that the six 
directrices form a tetrahedron. 

Definition Given three linear congruences which are determined by three disjunct 
pairs of linear complexes of a system of six fundamental complexes, the tetrahedron 
which is formed by the six directrices of these three congruences is called a 
fundamental tetrahedron. 

A system of six fundamental complexes possesses fifteen fundamental tetrahedra. 
The proof is again purely combinatorial. The six fundamental complexes can be 
partitioned into three disjunct pairs in fifteen different ways. Because, one complex 
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can be grouped with any one of the other five complexes. The remaining four 
complexes can form six different pairs, whereby one pair uniquely determines the 
other. Thus there are only three distinct ways for a given pair to choose the 
remaining two points and so it follows that there are 5  3 = 15 ways to form the 
required three disjunct pairs of complexes.  

Each associated pair of directrices (i.e. the directrices of a chosen congruence) is 
intersected by 3  4 = 12 directrices (see above), which as just enumerated belong to 
three different pairs of two complexes. Thus the pair of directrices which is under 
consideration belongs to three fundamental tetrahedra. 

An associated pair selected from the thirty directrices lies in four of the fundamental 
surfaces. So, for example, the pair of directrices of the congruence (F1F2) lies in 
each of the quadratic surfaces which are listed in Table 18.1. The triplets in this 
table specify 2-manifolds and the associated 2-manifolds of root complexes. 

 

((F1F2F3)‚ (F4F5F6)) 

((F1F2F4)‚ (F3F5F6)) 

((F1F2F5)‚ (F3F4F6)) 

((F1F2F6)‚ (F3F4F5)) 

((F1F3F4)‚ (F2F5F6)) 

((F1F3F5)‚ (F2F4F6)) 

((F1F3F6)‚ (F2F4F5)) 

((F1F4F5)‚ (F2F3F6)) 

((F1F4F6)‚ (F2F3F5)) 

((F1F5F6)‚ (F2F3F4)) 

  

Table 18.1 Table 18.2 

 

Theorem 18.2 Given an associated pair of directrices among the thirty directrices 
of a system of six fundamental complexes. 
(1) The two directrices are intersected by twelve of the remaining directrices.  
(2) The two directrices lie in three fundamental tetrahedra and four fundamental 
surfaces. 
(3) The two directrices are polar with respect to the remaining six fundamental 
surfaces 

Proof: (1) and (2) have just been proven. – (3) The assertion will be proven for the 
pair of directrices of the congruence (F1F2). The remaining cases are covered by 
cyclically advancing the subscripts of the complexes. (All ten fundamental surfaces 
are contained in Tables 18.1 and 18.2.) Inspection of Table 18.2 shows that F1 and 
F2 are not contained in the same 2-manifold, but that one lies in a 2-manifold B and 
the other lies in the associated 2-manifold of root complexes B'. Thus, the 
directrices of (F1F2), u and v, do not belong to any of the common reguli of the 
complexes belonging to either of the 2-manifolds B or B', because only directrices 
of congruences of the 2-manifold B or of the associated 2-manifold of root 
complexes B' are, as axes of the special complexes in B or B', rulers of the 
fundamental surface. Both other pairs of complexes - (F3F4) and (F5F6) in the first 
line of Table 18.2 – yield two congruences C and C', whose directrices intersect the 
directrices of the congruence (F1F2) and thus form together with u and v a 
fundamental tetrahedron (Figure 18.1). One of the congruences C, C' is in the 2-
manifold B, while the other is in the 2-manifold of root complexes B'. Their 
directrices thus belong to the two reguli of a ruled surface. For example, consider the 
congruences C = (F3F4) and C' = (F5F6) for which the corresponding reguli are 
within the fundamental surfaces ((F1F3F4)‚ (F2F5F6)) and ((F1F5F6)‚ (F2F3F4)) 
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respectively. Thus the lines u and v are polar and the corresponding fundamental 
tetrahedron is a tangential tetrahedron (Figure 18.1). 

 

 

Figure 18.1 

 

Theorem 18.3 The ten fundamental surfaces of a system of six fundamental 
complexes form two groups with respect to a fundamental tetrahedron. 

(1) The members of the first group of six surfaces each contain four of the six edges 
of the fundamental tetrahedron, which is consequently a tangential tetrahedron of 
these surfaces.  

(2) The fundamental tetrahedron is self polar relative to the remaining six surfaces, 
and thus is a polar tetrahedron. 

As shown in Theorem 18.2, the two directrices of a congruence, say (F1F2), either 
(1) belong to the fundamental surface associated with triplets of complexes, to one 
of which F1 and F2 belong or (2) are a polar pair of lines with respect to a 
fundamental surface associated with triplets of complexes, neither of which contains 
both F1 and F2.. This fact leads almost immediately to the desired result. – Simple 
combinatorics show that when three pairs are partitioned into two triplets, there are 
either no pairs in either triplet or one pair in each triplet. Of the ten possible cases, 
six yield one pair in each triplet and four yield no pair in either triplet. If, for 
example, the three pairs are (F1F2), (F3F4) and (F5F6), then all ten possible pairs of 
triplets are listed in Tables 18.1 and 18.2. Inspection of these tables identifies: (1) 
the six cases in which each triplet contains a pair: the four cases of Table 18.1 and 
the first and last cases of Table 18.2; (2) the four cases in which neither triplet 
contains a pair: the remaining four cases of Table 18.2. – When the pairs are 
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interpreted as congruences and the triplets as fundamental surfaces, the six cases in 
(1) identify six tangential tetrahedra and the four cases in (2) identify four polar 
tetrahedra. The same argument applies to any choice of three congruences.  

Theorem 18.4 The fifteen fundamental tetrahedra of a system of six fundamental 
complexes form two groups relative to a fundamental surface. One group contains 
six polar tetrahedra, the other contains nine tangential tetrahedra. 

Proof: Consider, for example, the surface ((F1F2F3)‚ (F4F5F6)). Table 18.3 shows 
that there are six possible ways to form three pairs of complexes, so that one 
member of each pair belongs to a 2-manifold and the other belongs to the associated 
2-manifold of root complexes. The six fundamental tetrahedra which are formed by 
the three pairs of directrices of the congruences associated with these three pairs of 
complexes are polar tetrahedra, as none of the pencils of complexes is contained 
within either the 2-manifold or the associated 2-manifold of root complexes. A 
combinatorial consideration shows that the remaining nine fundamental tetrahedra 
are tangential tetrahedra because four of their edges lie in the fundamental surface. 

 

(F1F4) (F2F5) (F3F6) 
(F1F4) (F2F6) (F3F5) 
(F1F5) (F2F4) (F3F6) 
(F1F5) (F2F6) (F3F4) 
(F1F6) (F2F4) (F3F5) 
(F1F6) (F2F5) (F3F4) 

 

Table 18.3 

 

The system of six pairwise reciprocal fundamental complexes was considered in 
Section 18.1 as a figure of the five-dimensional manifold of linear complexes. It 
appears there as a polar sixfold figure of complexes and 4-manifolds which is 
simultaneously invariant with respect to two polarities: with respect to the universal 
line quadric and with respect to another polarity in the five dimensional manifold of 
linear complexes. Although there has been no reference to 4-manifolds in this 
section, it is not thereby incomplete. The complete system of six reciprocal 
complexes and 4-manifolds has been considered. For the case of the five-
dimensional manifold of linear complexes, it is sufficient to exchange the 
expressions «complex» and «4-manifold». In the much more important case of line-
space, complexes, pencil of complexes and 2-manifolds of complexes cannot be 
distinguished from the 4-manifolds, 3-manifolds and 2-manifolds which are 
reciprocal to them (Section 17.4). The special complexes of the latter mentioned 
manifolds are the generators of the common line figures of the former -manifold of 
complexes. 

 

18.3 Notes and references 

A mathematically more complete treatment of projectivities in the five-dimensional 
manifold of linear complexes can be found, for example, in Stoss [1999]. 

Fundamental complexes play an important role in construction of co-ordinates in the 
five-dimensional manifold of linear complexes (Jessop [1903], Stoss [1995], [1999].  

Klein discovered the system of six pairwise reciprocal mutually nullinvariant 
complexes when investigating projective invariants. Specifically, he was 
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investigating linear transformations of coordinates for linear complexes which 
transform a quadratic function between such coordinates into normal form and leave 
the universal line quadric invariant. They are therefore also known as Klein's 
Fundamental Complexes (see Klein [1868], [1870a], [1870b], [1872]). This text 
adheres closely to Klein's ideas. 

The 6-fold infinite possibilities in the choice of fundamental complexes with respect 
to a second degree surface obtain practical significance in the Mechanics of rigid 
bodies. It relates to the six degrees of freedom of any rigid body in Euclidean or 
non-Euclidean space, whose projective metric is determined by the second degree 
surface mentioned above (Adams [1977], [1966], Ball [1900]). 

The theory and history of line geometry and mechanics are considered in Ziegler 
[1985], where further references are included. 

For further consideration of imaginary theory within line geometry see Ziegler 
[1998], Juel [1934]. For imaginary theory relating to linear complexes refer to 
Kötter [1982], Kötter/Stoss [2008]. 

Further applications of the system of fundamental complexes can be found in 
Gschwind [1991], [2000], [2005], [2008]. 
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