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Projectivities in Three-Dimensional Space 
 
 

Renatus Ziegler 
 
 
This chapter gives a fairly complete treatment of important types of projectivities in 
three-dimensional projective space. The emphasis is on transformations, their classi-
fications and characteristic properties, not on geometric figures. However, some 
important structures, particularly quadratic surfaces, linear congruences and com-
plexes, are closely related to one or the other of these transformations. For surfaces 
of the second degree, these relationships will be presented in section 5.4.2; similar 
treatments for linear complexes and linear congruences have to be postponed until 
sections 8.5 and 9.6 respectively, that is, after they have been defined in terms of 
projective generations independent of these transformations. 
After proving the three-dimensional analogue of the Fundamental Theorem of Pro-
jective Geometry (Theorem 1.1) in section 2.1, a complete classification of three-
dimensional autocollineations is given in section 2.2. Some important classes of 
three-dimensional autocorrelations are treated in sections 5.2.2 and 5.3, and the 
properties of the most interesting classes of three-dimensional autocollineations are 
studied in sections 5.4 and 5.5. 
 
2.1 Three-dimensional collineations and correlations 
Definition Three-dimensional projective space is the set of all point, lines and 
planes that satisfy the axioms for primitive elements containing each other (CO), the 
axioms of connection and intersection (CI) and the axioms of order and continuity 
(OC). 
It is useful within certain contexts to think of three-dimensional projectivities as 
occurring between two distinct spaces instead of being transformations of three-
dimensional projective space into itself. In the last case, one has to deal with three-
dimensional autocollineations and autocorrelations (see sections 2.2 and 5.2.2) 
Definition A one-to-one correspondence between two three-dimensional projective 
spaces is called a three-dimensional collineation if to two dissimilar primitive ele-
ments a, B containing each other of one space correspond two dissimilar primitive 
elements a', B' containing each other of the other space, such that a, a' and B, B' are 
each pairs of different primitive elements. 
Definition A one-to-one correspondence between two three-dimensional projective 
spaces is called a three-dimensional correlation if to two dissimilar primitive ele-
ments a, B containing each other of one space correspond two dissimilar primitive 
elements A', b' containing each other of the other space, such that a, A' and B, b' are 
each pairs of dissimilar primitive elements.  
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Definition A one-to-one correspondence between two three-dimensional projective 
spaces is called a three-dimensional projectivity, if it preserves the relation of primi-
tive elements containing each other, or, equivalently, if one-dimensional primitive 
forms correspond to one-dimensional primitive forms such that they are projective.  
The definition of linear dependence of points and planes from section 1.5 needs to 
be adjusted to three dimensions. Linear dependence of lines will be defined in sec-
tion 7.3. 
Definition Four points or four planes are called linearly independent if they do not 
lie in one two-dimensional primitive form, that is, if they do not have a plane or a 
point in common respectively. Five points or five planes are called linearly inde-
pendent, if no four of them are linearly dependent.  
Theorem 2.1A A collineation between 
two three-dimensional projective spaces 
P, P' is uniquely determined by two 
planes α, β in P that are collinear to 
two planes α', β' in P' respectively such 
that to every point lying on αβ corre-
sponds a point lying on α'β'. 

Theorem 2.1a A correlation between 
two three-dimensional projective spaces 
P, P' is uniquely determined by two 
centric bundles A, B in P that are cor-
relative to two planar fields α', β' in P' 
respectively such that to every plane 
passing through AB corresponds a point 
lying on α'β'. 

Figure 2.1 
 
Proof (for the sake of variety the right side is proved; see Figure 2.1): Elements 
belonging to P' or P are denoted by primed or unprimed symbols respectively. The 
proof is carried out in two steps according to the following claims, where the various 
special cases are left as exercises for the reader. (i) To every point P corresponds a 
unique plane π' and to every line l passing through P corresponds a unique line l' 
lying in π'. – If P does not lie on AB, the lines r = AP and s = BP correspond with 
respect to the given correlations to some lines r' in α' and s' in β' which intersect in a 
point M' of α'β' that corresponds to the plane µ = APB. The plane π' corresponding to 
P is now defined as the plane determined by r's'. Any line l not coinciding with AB 
determines with A and B two planes Al and Bl respectively that correspond to two 
points on α' and β' respectively which determine the line l'. If l passes through P, the 
planes Al and Bl belong respectively to the pencils of planes through AP and BP, 
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hence the two points corresponding to these planes lie on r' = α'π' and s' = β'π' re-
spectively, hence l' lies on π'. (ii) To every plane ε which passes through a line l or 
through a point P, there corresponds a point E' which lies on the corresponding line 
l' or on the corresponding plane π', that is, ε and E' are correlative. – One can define 
a perspectivity between the bundles A, B by projecting ε from A, B such that the 
planes passing through AB correspond to themselves. Since then the bundle A is 
perspective to the bundle B and α' is projective to A as well as β' projective to B, α' 
must be projective to β' such that the points of α'β' correspond to themselves. Hence 
the planes α' and β' are perspective with respect to a bundle with center E' (Theorem 
1.19A). The point E' is defined as the point corresponding to ε and is the center of a 
bundle that is correlative to the field ε. – In conclusion, corresponding points and 
planes are correlative, hence the theorem is proved. 
Now the Fundamental Theorem of Three-dimensional Projective Geometry can be 
proved. 
Theorem 2.2A A collineation between 
two three-dimensional projective spaces 
is uniquely determined if to the elements 
of a set of five linearly independent 
points or planes in one space corre-
spond uniquely the elements of a set of 
five linear independent points or planes 
respectively in the other space. 

Theorem 2.2a A correlation between 
two three-dimensional projective 
spaces is uniquely determined if to the 
elements of a set of five linearly inde-
pendent points or planes in one space 
correspond uniquely the elements of a 
set of five linear independent planes or 
points respectively in the other space. 

Proof (for correlations): Take A, B, C, D, E as five linear independent points of one 
space and α', β', γ', δ', ε' respectively as the corresponding five linearly independent 
planes of the other space. Theorem 2.2a can be reduced to Theorem 2.1a by demon-
strating that, for example, A and B can be made correlative to α' and β' respectively 
such that the planes of AB correspond to the points of α'β'. The correlation between 
A and α' (B and β') is uniquely determined by ordering the lines AB, AC, AD, AE 
(BA, BC, BD, BE) to the lines α'β', α'γ', α'δ', α'ε' (β'α', β'γ', β'δ', β'ε') respectively. 
From this follows that the planes ABC, ABD, ABE belong to both bundles with cen-
ters A, B and correspond to the three points α'β'γ', α'β'δ', α'β'ε' that are common to 
both fields α', β'. Hence, by Theorem 1.1, every plane of the pencil AB corresponds 
to a point of the range α'β'. 
In fact, Theorem 2.2 is equivalent to Theorem 2.1, that is, Theorem 2.1 can also be 
deduced from Theorem 2.2. This is a good exercise and is left to the reader. Note in 
passing that, since the product of two correlations is a collineation, Theorem 2.2A is 
an immediate consequence of Theorem 2.2a. 
 
2.2 Classification of three-dimensional autocollineations 
2.2.1 Invariant elements of three-dimensional autocollineations 
A three-dimensional autocollineation is a collineation of a three-dimensional projec-
tive space into itself. Later in this chapter, the prefix «auto» will be dropped if there 
is no danger of confusion. 
As in two dimensions, the following Theorem 2.3 is equivalent to the uniqueness 
property of Theorem 2.1. The proof is perfectly analoguous to the proof of the Theo-
rem 1.15 given in section 1.6 for the two-dimensional case and hence needs not to 
be repeated here. 
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Theorem 2.3A If a three-dimensional 
autocollineation leaves five linearly 
independent points invariant, it is the 
identity. 

Theorem 2.3a If a three-dimensional 
autocollineation leaves five linearly 
independent planes invariant, it is the 
identity. 

One can conclude from this that an autocollineation that is not the identity has at 
most four linearly independent proper (i.e. real) invariant points or planes. But there 
is no lower limit k > 0 for the number n ≥ 0 of proper invariant points or planes as in 
the two-dimensional case (Theorem 1.16). As will be seen in the next section, there 
are collineations that have no proper invariant points or planes at all. However, even 
in this case, there are always at least two proper invariant lines (that may coincide). 
But as this is rather difficult to prove and needs powerful tools of line geometry, it is 
postponed to section 12.4 (Theorem 12.13). 
Before one can delve into the classification of autocollineations, one needs some 
information as to how the various invariant elements are related to each other. Once 
again, elements which are not explicitly called improper are considered to be proper. 
Theorem 2.4A If a non-identical three-
dimensional autocollineation has an 
invariant point then it has an invariant 
line and an invariant plane that are 
contained in it. 

Theorem 2.4a If a non-identical three-
dimensional autocollineation has an 
invariant plane then it has an invariant 
line and an invariant point that are 
contained in it. 

Proof: Immediate consequence of the Theorems 1.16 and 1.17. 
Theorem 2.5A If a non-identical three-
dimensional autocollineation leaves the 
points of a range invariant then it leaves 
the planes of a pencil invariant. 

Theorem 2.5a If a non-identical three-
dimensional autocollineation leaves the 
planes of a pencil invariant then it 
leaves the points of a range invariant. 

Proof (left side): Assume that u is the base-line of a range of invariant points. Then 
the pencil of planes with base u is transformed into itself. If this collineation is not 
the identity (which would prove the theorem) then there are at least two pairs α, α' 
and β, β' of corresponding planes passing through u. Since each pair contains u, α 
and α' as well as β and β' are perspective and hence are sections of bundles with 
centers A and B respectively (Theorem 1.19A). Every plane common to both bun-
dles A, B corresponds to itself since it contains a line each in α and β and also their 
corresponding lines in α', β'. (Hence, the center of perspectivity of every pair of 
corresponding planes passing through u must lie on AB.) 
Let u be a range of invariant points and v the base of the corresponding pencil of 
invariant planes. The lines u and v are, in general, skew, but they may also intersect 
each other or coincide (see next section). If v is also a range of invariant points then 
u is also the base of a pencil of invariant planes. In this case, u and v have to be 
either skew or coincide, otherwise, i.e. if they intersect without coinciding, they 
determine a field of invariant points and hence also a bundle of invariant planes. 
Theorem 2.6A If a non-identical three-
dimensional autocollineation leaves the 
points and lines of a field invariant, then 
it also leaves the planes and lines of a 
bundle invariant. 

Theorem 2.6a If a non-identical three-
dimensional autocollineation leaves the 
planes and lines of a bundle invariant, 
then it also leaves the points and lines 
of a field invariant. 

Proof (left side): Let ε be the plane of invariant elements. Two corresponding planes 
α and α' will intersect in a line αα' which lies in ε (Figure 2.2). Hence α and α' are 
perspective and thus sections of a bundle with center Z (Theorem 1.19A). But every 
line or every plane through Z intersects ε in an invariant point or line respectively 
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and likewise intersects the planes α and α' in corresponding points or corresponding 
lines. Therefore, the bundle Z consists entirely of invariant elements. 

 
Figure 2.2 

 
The Theorems 2.4, 2.5 and 2.6 imply that there are as many points or planes in a set 
of invariant elements of a three-dimensional autocollineation as there are invariant 
planes or points respectively in this set (Theorem 2.7). 
Theorem 2.7 The points and planes of a set of invariant elements of a three-
dimensional autocollineation can be related by a one-to-one correspondence. 
In formulating the theorems of this section one has already touched upon the most 
important cases of three-dimensional autocollineations. The following definition 
describes the ones that were given specific names. 
Definition A three-dimensional autocollineation that has exactly one range of in-
variant points (and hence exactly one pencil of invariant planes) is called uniaxial.  
Definition A three-dimensional autocollineation that leaves exactly the points and 
lines of a field (and hence the lines and planes of a bundle) invariant is called per-
spective.  
Definition A non-perspective three-dimensional autocollineation in which every line 
that joins two corresponding points or is the intersection of two corresponding 
planes is invariant is called biaxial or skew. 
Uniaxial collineations will not be treated in any detail in this series of papers. Three-
dimensional perspective collineations will be treated in section 2.3 and some special 
classes of biaxial collineations will appear in section 5.1.3. Note in passing: Three-
dimensional non-perspective collineations that have two skew ranges of invariant 
points are biaxial, hence the name; however, the converse is not true, that is, the 
axes of a biaxial collineation need not be proper, or real, in any case. 
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2.2.2 Classification of three-dimensional autocollineations 
The theorems of the foregoing section provide the background one needs in order to 
classify three-dimensional autocollineations completely. Particularly, Theorem 2.5 
will be applied frequently without mentioning this fact every time explicitly. In 
addition, one often has to use the elementary facts that two invariant points deter-
mine an invariant line, an invariant line and an invariant point not contained in it 
determine an invariant plane, etc. 
The following classification of autocollineations is based on properties of proper 
invariant elements. The classification process is started with the following distinc-
tion that divides all collineations in three classes: 
 
(A)  There exists at least one proper invariant point A1 and one proper invariant 

plane ε1 not passing through A1. 
(B)  There exists at least one proper invariant point and one proper invariant 

plane; each invariant point lies in each invariant plane. 
(C) There are no proper invariant points and no proper invariant planes. 
 
To begin with, assume that there is at least one invariant point and hence, by duality, 
at least one invariant plane. However, according to Theorem 2.3, there can be no 
more than four linearly independent invariant points or planes. In the subsequent 
derivation, linearly independent invariant points and planes respectively are 
throughout denoted by A1, A2, A3, A4 and ε1, ε2, ε3, ε4 such that Ai and εi, i = 1, 2, 3, 4, 
are points and planes which do not contain each other. Every class of collineations is 
denoted by a latin numeral in parentheses that refers at the same time to a diagram in 
Figure 2.3 that represents the invariant elements of this particular class in a, hope-
fully, immediate comprehensible way. In addition, for every individual class the 
class of autocollineations of its invariant planes is indicated by writing, for example, 
ε3 (II) or ε1ε3 (II) if ε3 or all planes of pencil ε1ε3 are transformed by two-
dimensional autocollineations of class (II) (see section 1.7). Since Ai is the only 
invariant point which does not lie on εi, it follows that the class of autocollineations 
of the bundle with center Ai is the same as the class of autocollineations of the in-
variant plane εi, i = 1, 2, 3, 4. 
 
 
(A) There exists at least one proper invariant point A1 and one proper invariant plane 
ε1 that does not pass through A1. Hence the collineation in plane ε1 must belong to 
any of the classes (Ia), (Ib), (II), (III), (IV), (V), (VI). This yields the following 
classes. 
 
(A.Ia) Let ε1 be of class (Ia) and let A2, A3, A4 and ε2, ε3, ε4 be the invariant points or 
invariant planes that contain ε1 or A1 respectively. If there are no additional invariant 
points (or planes), this yields the following class (1a). 
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Class (1a): General collineation 
Invariant points:  
A1, A2, A3, A4 
Invariant planes:  
ε1 (Ia), ε2 (Ia), ε3 (Ia), ε4 (Ia) 
Invariant lines:  
all six edges of the tetrahedron A1, A2, A3, 
A4 

Figure 2.3: (1a) 
 
 
Additional invariant points can only lie on the lines A1A2, A1A3, and A1A4. Assume 
that exactly one of these lines, say A1A2, is a range of invariant points, then one has 
class (2a). 
 
Class (2a): Uniaxial collineation 
Invariant points:  
A3, A4 and range A1A2 
Invariant planes:  
ε3 (III), ε4 (III), and pencil ε1ε2 (Ia) 
Invariant lines:  
A1A2, A3A4 and pencils (A3, ε4), (A4 , ε3) 

Figure 2.3: (2a) 
 
 
If more than one invariant line outside ε1 is pointwise invariant, then ε1 could not be 
of class (Ia), in contradiction the assumption above. 
 
(A.Ib) Let ε1 be of class (Ib) and take A2 and ε1ε2 as the invariant elements in ε1. If 
there are no invariant points other than A1, A2, one has the class (1b). 
 
Class (1b)  
Invariant points:  
A1, A2 
Invariant planes:  
ε1 (Ib), ε2 (Ib) 
Invariant lines: 
A1A2, ε1ε2 

Figure 2.3: (1b) 
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Without disturbing the class of ε1, additional invariant points can only sit on A1A2, 
hence one has class (2b). 
 
Class (2b): Uniaxial collineation 
Invariant points:  
range A1A2 
Invariant planes:  
pencil ε1ε2 (Ib) 
Invariant lines:  
A1A2, ε1ε2 

Figure 2.3: (2b) 
 
 
(A.II) Let ε1 be of class (II) and take A2, A4 as the invariant points and A2A4, ε1ε2 as 
the invariant lines in ε1. If there are no invariant points other than A1, A2, A4, one has 
class (3a). 
 
Class (3a)  
Invariant points:  
A1, A2, A4 
Invariant planes:  
ε1 (II), ε2 (II), ε3 (Ia) 
Invariant lines: 
A1A2, A1A4, A2A4, ε1ε2 
 Figure 2.3: (3a) 
 
 
Without disturbing the class of ε1, additional invariant points can only lie on either 
A1A2 or A1A4. This yields the two classes (4) and (5). 
 
Class (4): Uniaxial collineation 
Invariant points:  
A4, range A1A2 
Invariant planes:  
ε3 (III), pencil ε1ε2 (II) 
Invariant lines:  
A1A2, ε1ε2, pencil (A4, ε3) 
 
 
 
 

Figure 2.3: (4) 
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Class (5): Uniaxial collineation 
Invariant points:  
A2, range A1A4 
Invariant planes:  
ε1 (II), ε2 (V), pencil ε1ε3 (II) with ε3 (III)  
Invariant lines:  
pencils (A2, ε3), (A4, ε2) 

Figure 2.3: (5) 
 
 
(A.III) Let ε1 be of class (III) and take A4 as the center and A2A3 as the axis of the 
homology in ε1. If A1 is the only invariant point outside ε1, then one has again class 
(2a). Without disturbing the class of ε1, additional invariant points can either be in 
the plane ε4 = A1A2A3, or in the line A1A4. In the first case, plane ε4 consists only of 
invariant elements, hence one has the following two classes (6) and (7a). 
 
Class (6): Perspective collineation  
(homology) 
Invariant points:  
A4, field ε4 = A1A2A3 
Invariant planes:  
ε4 (VI), bundle A4 = ε1ε2ε3 (III) 
Invariant lines:  
field ε4, bundle A4 
 
 
 
 

Figure 2.3: (6) 

Class (7a): Hyperbolic biaxial collineation 
Invariant points:  
ranges A1A4, A2A3 
Invariant planes:  
pencils ε1ε4 (III), pencils ε2ε3 (III) 
Invariant lines:  
A1A4, A2A3, and all lines that meet both A1A4 
and A2A3 

Figure 2.3: (7a) 
 
 
(A.IV) Let ε1 be of class (IV) and take A4 as the invariant point and A3A4 as the in-
variant line. Either A1 is the only invariant point outside ε1, or an additional invariant 
point lies on A1A4 (otherwise one would need to alter the class of ε1), hence (see 
Theorem 2.5) one arrives at the classes (8) and (9). 
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Class (8)  
Invariant points:  
A1, A4 
Invariant planes:  
ε1 (IV), ε2 (II) 
Invariant lines:  
A1A4, ε1ε2 
 
 
 
 
 

Figure 2.3: (8) 

Class (9): Uniaxial collineation 
Invariant points:  
range A1A4 

Invariant planes:  
pencil ε1ε2 (IV) with ε2 (V) 
Invariant lines:  
pencil (A4, ε2) 

Figure 2.3: (9) 
 
 
(A.V) Let ε1 be of class (V) and take A4 as the center and A2A4 as the axis of the 
elation in ε1. If there are no other invariant points outside ε1 besides A1, one has 
again class (5). In order not to disturb the class of ε1, any additional invariant point 
must lie on ε3 = A1A2A4, hence making this plane consist only of invariant elements: 
class (10). 
 
Class (10): Perspective collineation  
(elation) 
Invariant points:  
field ε3 = A1A2A4 
Invariant planes:  
bundle A4 = ε1ε2ε3 (V) with ε3 (VI) 
Invariant lines:  
field ε3 and bundle A4 

Figure 2.3: (10) 
 
 
(A.VI) Let ε1 be of class (VI). If A1 is the only invariant point outside ε1, then one 
has again class (6). Any additional invariant point outside ε1 yields the identity, class 
(11). 
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Class (11): Identity 
Invariant points:  
three-dimensional space of ∞3 points 
Invariant planes:  
three-dimensional space of ∞3 planes 
Invariant lines:  
∞4 lines within three-dimensional space of 
points and planes 

Figure 2.3: (11) 
 
This exhausts all cases of class (A).  
 
 
(B) Three-dimensional autocollineations with at least one proper invariant point and 
one proper invariant plane such that each invariant point of this autocollineation lies 
in each invariant plane. Class (B) can be subdivided into the following subclasses: 
 
(Ba)  There are at least two invariant planes, say ε1 and ε3. 
(Bb)  There is exactly one invariant plane, say ε1. 
 
(Ba) All invariant points must lie on ε1 and ε3, that is, the possible autocollineations 
of the planes ε1 and ε3 can only belong to the classes (II), (IV), (V) and must, as it 
turns out, be the same for both invariant planes. Hence one has to consider the fol-
lowing cases: 
 
(Ba.II) Let ε1 be of class (II) and let A2A4 and A3A4 be the invariant lines and A2, A4 
the invariant points of ε1. This induces in ε3 a collineation of class (II) such that A2A4 
is an invariant line and the other invariant line passes through A2 (it cannot pass 
through A4, since this would imply an invariant plane not passing through A2, in 
contradiction with (B)). Hence one has class (12a). 
 
Class (12a)  
Invariant points:  
A2, A4 
Invariant planes:  
ε1 (II), ε3 (II) 
Invariant lines:  
A2A4, A2A1, A4A3 

Figure 2.3: (12a) 
 
 
 
 



 44

(Ba.IV) Let ε1 be of class (IV) and let A2 be the invariant point and ε1ε3 the invariant 
line of ε1. Hence the plane ε3 must be of the same class than ε1 and hence has the 
same invariant point A2. But then the bundle A2 contains exactly two distinct invari-
ant planes which implies that there are exactly two distinct invariant points (Theo-
rem 2.4). Since the invariant line ε1ε3 contains by assumption only one invariant 
point, this additional point must lie outside ε1ε3. Hence it is not the case that both 
invariant points can be contained in both invariant planes – in contradiction to (B). 
Therefore there is no class that has the property (Ba.IV). 
 
(Ba.V) Let all points of ε1ε3 be invariant and hence both ε1 and ε3 are of class (V). 
Let A4 be the center for the elation in ε1. Then the center for ε3, say A2, cannot coin-
cide with A4, because if this were the case, all planes through A4 would be invariant 
planes whereas only the planes of the pencil ε1ε3 contain all invariant points – in 
contradiction to (B). The pencil of invariant planes (Theorem 2.5) must coincide 
with the pencil of ε1ε3 in order to comply with (B). All these invariant planes are of 
class (V) such that their centers are distinct from each other (for the same reason as 
for the centers of ε1 and ε3). Hence one has class (13). 
 
Class (13)  
Invariant points:  
range A2A4 
Invariant planes:  
pencil ε1ε3 (V) 
Invariant lines:  
every point of A2A4 is center of a pencil of 
invariant lines lying in its corresponding 
invariant plane (forming a parabolic linear 
congruence) Figure 2.3: (13) 

 
 
(Bb) There is exactly one invariant plane, say ε1. It can be inferred from Theorem 
2.4 that if there is exactly one invariant plane then there is exactly one invariant 
point. Therefore, the invariant plane ε1 can only be of class (Ib) or (IV). 
 
(Bb.Ib) Let ε1 be of class (Ib) and let A2 be the invariant point and A3A4 the invariant 
line in ε1. The only additional invariant line (Theorem 2.7) must pass through A2 
without lying in ε1. This yields class (3b). 
 
Class (3b)  
Invariant point:  
A2 
Invariant plane:  
ε1 (Ib) 
Invariant lines:  
A1A2, A3A4 

Figure 2.3: (3b) 
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(Bb.IV) Let ε1 be of class (IV) and let A4 be the invariant point in ε1 and A3A4 the 
invariant line in ε1. There can be no additional invariant line without producing addi-
tional invariant points or planes, hence one has finally class (14). 
 
Class (14)  
Invariant point:  
A4 
Invariant plane:  
ε1 (IV) 
Invariant line:  
A3A4 Figure 2.3: (14) 
 
 
This classification exhausts all cases of three-dimensional autocollineations that 
have at least one proper (real) invariant point and hence one proper (real) invariant 
plane. Since all cases that involve two-dimensional autocollineations of class (Ib) 
were included systematically, this classification encompasses all cases of three-
dimensional autocollineations the invariant figures of which are partially improper 
(imaginary or complex). Particularly, these are the classes (1b), (2b), and (3b). They 
have the same numbers of invariant elements as the classes (1a), (2a), and (3a) re-
spectively if one ignores the difference between proper and improper elements. 
 
 
(C) In order to extend the classification to the cases in which all invariant points or 
planes are improper, one has to drop the assumption that there is at least one proper 
invariant point or plane as in the classes (A) or (B). Therefore, one needs a new 
approach that does not rely on the considerations above which were carried out 
essentially by studying the properties of proper invariant points and planes. Proper 
invariant points or planes need not exist. But what about invariant lines? Do they 
always exist? In fact, they do; this can be seen by inspection in the cases where one 
has proper invariant points or planes also (see above). If there are no proper (real) 
invariant points or planes, the situation is much more complicated: the proof of the 
existence of invariant lines of a three-dimensional collineation without proper (real) 
invariant points or planes involves advanced methods of line geometry (see section 
12.4). The result, however, is quite simple (Theorem 12.13): If a three-dimensional 
autocollineation has no proper (real) invariant points or planes it has either two 
proper invariant lines, each of which contain a pair of improper (conjugate imagi-
nary) invariant points (i.e. an invariant elliptic point involution), or one proper 
invariant line that contains one pair of improper (conjugate imaginary) invariant 
points. Hence one has immediately the two additional classes of three-dimensional 
autocollineations, class (1c) and (12b).  
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Class (1c)  
Proper invariant points:  
none 
Proper invariant planes:  
none 
Invariant lines:  
A1A2, A3A4 
 
 
 
 

Figure 2.3: (1c) 

Class (12b) 
Proper invariant points:  
none 
Proper invariant planes:  
none  
Invariant line:  
A2A4 Figure 2.3: (12b) 
 
 
Once again, the classes (1c) and (12b) are equivalent to the classes (1a) and (12a) 
respectively, since they both have the same number of invariant points and planes if 
improper invariant elements are treated in the same way as proper ones. 
It will be shown in section 5.1.3 that there is a class of collineations in three-
dimensional projective space that has no proper (real) invariant points or planes yet 
∞2 invariant lines. This class is closely related to class (7a), hence one has class 
(7b). 
 
Class (7b): Elliptic biaxial collineation 
Proper invariant points:  
none 
Proper invariant planes:  
none 
Invariant lines:  
form an elliptic linear congruence 

Figure 2.3: (7b) 
 
 
Theorem 2.8 There are 14 classes of three-dimensional autocollineations (including 
the identity) if one ignores if the invariant elements are proper (real) or not; other-
wise, there are 20 classes.  
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The astute reader may have noted that there are no existence proofs for all the 
classes mentioned above. This can be remedied either by giving examples (see 
Baldus [1928] or Grassmann [1896], pp. 438–464) or explicit constructions. The 
latter approach can be executed by applying Theorem 2.2 appropriately. For exam-
ple, consider a collineation with four linearly independent invariant points, that is, 
four coinciding pairs of corresponding points. Then the collineation is perspective, 
biaxial, uniaxial, or general if the line joining a fifth pair of corresponding points 
passes through an invariant point, or intersects two invariant lines, or intersects ex-
actly one invariant line, or does not contain any invariant element respectively (see 
Figure 2.4). There will be no discussion of the existence of the remaining classes 
here. However, the various kinds of collineations treated in chapter 6 provide ex-
plicit constructions for many additional classes, encompassing the most important 
ones. 

Figure 2.4 
 
2.3 Three-dimensional perspective collineations 
A three-dimensional collineation is called perspective, or a perspectivity if it has the 
points of a plane as invariant elements (see section 2.2.1). According to Theorem 2.6 
the set of invariant elements of a perspectivity consists of all the elements of a bun-
dle and a field.  
Definition The center-point of the invariant planes of a three-dimensional perspec-
tivity is called the center of the perspectivity and the base-plane of the field of in-
variant points the axial plane of the perspectivity. If the center lies on the axial 
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plane, the perspectivity is called an elation, otherwise a homology. 
Therefore, any two corresponding points P, P' of a perspectivity lie in an invariant 
line through the center Z and any two corresponding lines g, g' lie in a plane through 
Z and intersect in a point of the axial plane ζ; two corresponding planes meet in a 
line of the axial plane ζ (see Figure 2.5 for the case of a homology). The existence of 
perspectivities is confirmed by the following Theorem 2.9. 
Theorem 2.9 A perspectivity is uniquely determined by its center, its axial plane 
and a pair of distinct corresponding points or planes. 
Proof: Let Z be the center and ζ the axial plane of the perspectivity, and let A, A' and 
α, α' be corresponding points or planes respectively. If B, C, D are any linearly inde-
pendent points in ζ and β, γ, δ any linearly independent planes through Z, then the 
projectivity between ZABCD and ZA'BCD or between ζαβγδ and ζα'βγδ uniquely 
determines a collineation (Theorem 2.2). This collineation is perspective, since the 
intersection point E of AA' with ζ is a fourth invariant point in ζ (see Figure 2.6), or, 
respectively, the plane αα'Z is a fourth invariant plane through Z. 
 

Figure 2.5 Figure 2.6 
 
2.4 Notes and references 
For a comprehensive treatment of projectivities in three-dimensional space, see 
Reye [1907] or Sturm [1909] or, from an algebraic point of view, Semple/Kneebone 
[1952]. The classification of three-dimensional autocollineations given here is 
mainly due to Baldus [1928], but see also Grassmann [1896], Newson [1897] 
[1900]. For an elementary introduction, see Edwards [1985]. For an algebraic treat-
ment on the basis of path curves, see Boer [2004]. 
With minor adaptions, Figure 2.3: (7b) is taken from Pottmann/Wallner [2001], 
Figure 3.7, p. 176. 
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