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Selected Topics in Three-Dimensional Synthetic Projective Geometry 
Chapter 1 

 
 

Projectivities Between Primitive Forms of One 
and Two Dimensions 

 
 

Renatus Ziegler 
 
 
The concept of projectivity will be explained in section 1.1, where also the Funda-
mental Theorem of Projective Geometry is stated (Theorem 1.1). The latter is, in 
fact, the basis in which all higher projective geometry is rooted. Some of its conse-
quences will be presented in sections 1.2 and 1.3. Projectivities of one-dimensional 
primitive forms into themselves are of special interest, and among these the one-
dimensional involutions, discussed in section 1.4, are particularly useful. 
In the rest of this chapter a brief account of two-dimensional projective geometry is 
given. There is no need to be exhaustive or even detailed since there are many good 
textbooks and monographs available on this subject. The emphasis lies more on two-
dimensional projectivities as they occur within three-dimensional projective space, 
in contrast to the usual treatment of two-dimensional projective geometry as pure 
plane geometry. 
 
1.1 The Fundamental Theorem of Projective Geometry 
The reader is assumed to be familiar with the concept of harmonic sets of four ele-
ments on one-dimensional primitive forms. 
Definition Two one-dimensional primitive forms of the same or different kind are 
said to be projective and their relation is called a projective correspondence or pro-
jectivity, if there exists a one-to-one correspondence between them such that to any 
harmonic set of four elements in one form, there corresponds a harmonic set of the 
corresponding four elements in the other. 
If A1, B1, C1, ... and A2, B2, C2, ... are corresponding elements of two projective one-
dimensional primitive forms F1 and F2, then F1 and F2, or A1B1C1 ... and A2B2C2 ... 
respectively are in a projective relation, or in short, projective. 
The following theorem derives its name from the fact that it opens the way to many 
important and characteristic theorems of projective geometry. 
Theorem 1.1 (Fundamental Theorem of Projective Geometry) A projectivity 
between two one-dimensional primitive forms is uniquely determined by three pairs 
of corresponding elements.  
The axioms of order and the axiom of continuity (OC) are instrumental for the proof 
of this theorem, as is the concept of harmonic sets (see e.g. Locher [1940] [1957], 
Coxeter [l960] [1965]).  
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1.2 One-dimensional collineations and correlations 
One-dimensional primitive forms comprise ranges of points, pencils of lines, and 
pencils of planes. Projective correspondences between two one-dimensional primi-
tive forms can be divided in two classes according to whether they involve two 
primitive forms of the same or a different kind. In the first case they are called col-
lineations and in the second correlations. 
A projectivity of a one-dimensional primitive form into itself is always a collinea-
tion. One then speaks either of two coincident collinear primitive forms, or simply 
of a collineation. An element that corresponds to itself is called a self-
corresponding, or invariant element.  
Theorem 1.2 A projectivity of a one-dimensional primitive form into itself that has 
more than two invariant elements is the identity.  
Proof: Take M, N, U as three invariant elements of a given projectivity, say P. Ac-
cording to Theorem 1.1, the three pairs of corresponding elements M = M', N = N', 
U = U' determine a unique projectivity. Since the identity fullfills these conditions, 
P is the identity.  
Definition A projectivity of a one-dimensional primitive form into itself is said to be 
hyperbolic, parabolic or elliptic according to whether the number of proper (real) 
invariant elements is two, one, or zero, respectively.  
It can be said that every projectivity of a one-dimensional primitive form into itself 
has two invariant elements; in the parabolic case they coincide and in the elliptic 
case they are conjugate imaginary, or improper, and can, according to von Staudt 
[1856], be represented by elliptic involutions (see section 1.4). If invariant elements 
are mentioned here, this expression means proper, i.e. real, invariant elements, 
unless it is stated explicitly that imaginary or improper ones are included. 
If A1, B1, C1 are three elements of a one-dimensional primitive Form F and A2, B2, C2 
the corresponding elements of a projectivity of F into itself, then the sense A2B2C2 is 
either the same as A1B1C1 or equal to the sense A1C1B1. 
Definition A projectivity of a one-dimensional primitive form into itself is called 
direct or opposite according to whether it preserves or reverses sense.  
Theorem 1.3 Every opposite projectivity is hyperbolic.  
Proof: See Coxeter [1965], pp. 36–39. 
Therefore, every elliptic or parabolic projectivity is direct. 
 
1.3 One-dimensional perspectivities 
Definition A projectivity between two one-dimensional primitive forms of a differ-
ent kind, i.e. a correlation, is called perspective, if two elements correspond to each 
other if and only if they contain each other.  
Definition A projectivity between two distinct one-dimensional primitive forms F1 
and F2 of the same kind, i.e. a collineation, is called perspective, if there exists a 
one-dimensional primitive form F of different kind (not having its base in common 
with one of the given forms) that is perspective with both F1 and F2 . 
Theorem 1.4 A collineation between two distinct one-dimensional primitive forms 
of the same kind lying in one two-dimensional primitive form is perspective if and 
only if their common element is self-corresponding. 
Proof: Take M as the self-corresponding element and A, A' and B, B' as two distinct 
pairs of corresponding elements. The collineation between the two one-dimensional 
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primitive forms is then uniquely determined by the projective relation between MAB 
and MA'B'. In addition, AA' and BB' determine uniquely the base of the primitive 
form (of a different kind) that is perspective to both of the given collinear primitive 
forms. – On the other hand, if the collineation between the two primitive forms is a 
perspectivity, then according to the definition, there exists a one-dimensional primi-
tive form F of a different kind that is perspective to both of them. The latter two 
always have a common element which must therefore be self-corresponding. 
Definition If the one-dimensional primitive form that is perspective to both given 
primitive forms that are related by a perspectivity is a pencil of planes or a range of 
points, its base line is called the axis of perspectivity; if it is a pencil of lines, its 
center is called the center of perspectivity.  
However, not every perspective collineation between two one-dimensional primitive 
forms has a common self-corresponding element. In particular, two skew ranges of 
points that are perspective to one pencil of planes are perspective to each other and 
two skew pencils of planes that are perspective to one range of points are also per-
spective to each other. The same holds true for two pencils of lines in different 
planes and with distinct centers that are both perspective either to one pencil of 
planes or range of points.  
If A1, B1, C1, ... correspond to A2, B2, C2, ... in a perspectivity between two one-
dimensional primitive forms F1 and F2, then F1 and F2 or A1B1C1 ... and A2B2C2 ... 
repectively are in a perspective relation, or in short, perspective. 
Another direct consequence of the Fundamental Theorem is the following Theorem 
1.5, which is very helpful in constructing corresponding elements of two collinear 
one-dimensional primitive forms. 
 

 

Figure 1.1A Figure 1.1a 
 
Definition Take A, B, C, ... and A', B', 
C', ... as corresponding points of two 
distinct ranges of points g and g' lying 
in one plane that are related by a col-
lineation. The lines that join a point P of 
g with any point Q' of g' that does not 

Definition Take a, b, c, ... and a', b', c', 
... as corresponding lines of two distinct 
pencils of lines G and G' lying in one 
plane that are related by a collineation. 
The intersection point of a line p of G 
with any line q' of G' that does not cor-



 38

correspond to P is called a cross-line; 
the line that joins the points P', Q that 
correspond respectively to P, Q' is 
called the corresponding cross-line.  
In particular, AB', A'B and BC', B'C are 
pairs of corresponding cross-lines 
(Figure 1.1A). 

respond to p is called a cross-point; the 
point of intersection of the lines p', q 
that correspond respectively to p, q' is 
called the corresponding cross-point.  
In particular, ab', a'b and bc', b'c are 
pairs of corresponding cross-points 
(Figure 1.1a). 

Theorem 1.5A The intersection points 
of corresponding cross-lines of two 
ranges of points in a plane that are 
related by a collineation all lie on a 
line. 
Proof: Project the points of g from A' 
and the points of g' from A. This yields 
two perspective pencils of lines since 
AA' is a self-corresponding common 
line (Theorem 1.4). The axis of perspec-
tivity, p, is then determined by the inter-
section points U, V of the corresponding 
cross-lines A'B, AB' and A'C, AC' (Fig-
ure 1.1A). – To construct to an arbitrary 
point X on g its corresponding point X' 
on g', intersect A'X with p and join this 
point with A, which finally yields X'. Is 
X = pg, then X' = gg' and if X = gg', 
then X' = pg'. – Hence, in the given 
collineation, to gg' = S in g corresponds 
pg' and to S in g' corresponds pg. But 
this implies that the axis of perspectiv-
ity of any two pencils in corresponding 
points of g, g' (for example in B, B' or 
C, C') must pass through the same 
points, namely the points that corre-
spond to S = gg' with respect to g and 
g'. Hence, the intersection points of all 
corresponding cross-lines all lie in one 
line. 

Theorem 1.5a The lines joining corre-
sponding cross-points of two pencils of 
lines in a plane that are related by a 
collineation all pass through a point. 
 
Proof: Intersect the lines of G by a' and 
the lines of G' by a. This yields two per-
spective ranges of points since aa' is a 
self-corresponding common point 
(Theorem 1.4). The center of perspec-
tivity, P, is then determined by the lines 
u, v joining the corresponding cross-
points a'b, ab' and a'c, ac' (Figure 1.1a). 
– To construct the line x' in G' that cor-
responds to an arbitrary line x in G, join 
a'x with P and intersect this line with a, 
which finally yields x'. Is x = PG, then 
x' = GG' and if x = GG', then x' = PG'. 
– Hence, in the given collineation, to 
GG' = s in G corresponds PG' and to s 
in G' corresponds PG. But this implies 
that the center of perspectivity of any 
two ranges in corresponding lines of G, 
G' (for example in b, b' or c, c') must lie 
on the same lines, namely the lines that 
correspond to s = GG' with respect to G 
and G'. Hence, the lines that join corre-
sponding cross-lines all pass through 
one point. 

The corresponding theorems for two pencils of lines or planes in a bundle can easily 
be derived by projecting the plane figures of Theorem 1.5 from a point outside the 
plane. For some proofs, the following Theorem 1.6 turns out to be useful. 
Theorem 1.6 Given four arbitrary but distinct elements of a one-dimensional primi-
tive form, there exists a projectivity that interchanges pairs among these four ele-
ments.  
Proof: Take for example four points R, S, T, U lying on a line l. Choose a point Z1 
outside l and join Z1 with R, S and T; select pick a point Z3 on Z1S to arrive at the 
lines z1 = Z3U and Z3R (Figure 1.2). Then one has the following chain of perspectivi-
ties: l is perspective to z1, z1 is perspective to z2 = Z1T and z2 is perspective to l, with 
the centers Z1, Z2 = R and Z3 respectively. However, this yields a projectivity be-
tween RSTU and SRUT as desired. 
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Figure 1.2 
 
1.4 One-dimensional involutions 
The concept of involution will be seen to have a fundamental bearing on the subject 
of non-Euclidean geometry (chapter 3). To begin with, a slightly more general con-
cept is presented, namely the notion of a periodic projectivity. 
Definition A projectivity P of a one-dimensional primitive form into itself whose m-
th power, m > 1, is a positive integer, is equal to the identity, Pm = E, and is said to 
be cyclic or periodic. If n > 1 is the smallest number for which this happens, n is 
called the period.  
Definition A projectivity of period two is called an involution.  
In this case P2 = E, and since the inverse P–1 exists, the relation P = P–1 holds, that 
is, an involution is equal to its inverse. Henceforth, an involution on a one-
dimensional primitive form exchanges its elements in pairs . Such pairs of corre-
sponding elements are said to be doubly corresponding. It is remarkable that it is 
sufficient for a projectivity to be an involution to exchange at least one pair of ele-
ments, as the following Theorem 1.7 shows. 
Theorem 1.7 A projectivity of a one-dimensional primitive form into itself that in-
terchanges two elements is an involution. 
Proof: If A, A' is the doubly corresponding pair and X, X' any other corresponding 
pair, then by Theorem 1.1 the given projectivity is the only one which is determined 
by the projective relation between AA'X and A'AX'. But by Theorem 1.6, there is a 
projectivity for which AA'XX' and A'AX'X are in a projective relation. Hence, this 
must be the same as the given projectivity, and X, X' is a doubly corresponding pair. 
Since X was arbitrary, the given projectivity is an involution. 
Theorems 1.1 and 1.7 immediately imply Theorem 1.8. 
Theorem 1.8 An involution is uniquely determined by any two of its doubly corre-
sponding pairs. 
Definition Involutions are called hyperbolic or elliptic according to whether they 
have two or no (real or proper) invariant elements.  
In particular, there is no parabolic involution: 
Theorem 1.9 If an involution in a one-dimensional primitive form has one invariant 
element it has another, and any two corresponding elements are harmonic conju-
gates with respect to the two invariant elements. 
Proof: Take A, A' as any pair in an involution in which M is an invariant element. 
Then the harmonic conjugate, N, of M with respect to A and A' is also a harmonic 
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conjugate of M with respect to A' and A. But since an involution is a projectivity and 
hence leaves harmonic sets invariant, N is also an invariant element (different from 
M, since the points MANA' form a harmonic set, that is, M and N are separated by A 
and A'). If any other pair X, X' is used instead of A, A', one still obtains the same 
harmonic conjugate N, since otherwise the involution would have more than two 
invariant elements. 
By Theorem 1.3, every opposite involution is hyperbolic; conversely, it can be 
shown that every hyperbolic involution is opposite (Coxeter [1965], section 2.7). 
This yields Theorem 1.10.  
Theorem 1.10 An involution is elliptic or hyperbolic according to whether it is 
direct or opposite.  
Theorem 1.11 An involution is elliptic or hyperbolic if and only if two of its corre-
sponding pairs of elements do or do not separate each other. 
Proof: If the involution determined by the pairs A, A' and B, B' is elliptic and thus 
direct (Theorem 1.10), the sense determined by AA'B is the same than that of A'AB' 
(but different from the sense AA'B'), hence A, A' and B, B' separate each other. Simi-
larly, if the involution is hyperbolic, the sense is opposite (Theorem 1.10) and hence 
the senses AA'B and AA'B' are equal; consequently A, A' and B, B' do not separate 
each other. – Conversely, if A, A' and B, B' are separated or not, then from Theorem 
1.10 follows that the involution is elliptic or hyperbolic respectively- 
Theorem 1.12 Two involutions in a one-dimensional primitive form, one of which at 
least is elliptic, always have a common corresponding pair of elements. 
Proof: Assume first that one of the involutions is hyperbolic and the other elliptic. 
The first is opposite and the latter direct (Theorem 1.10); hence, the composition of 
these two involutions must be opposite and hence has two invariant elements (Theo-
rem 1.3). Clearly these two invariant elements constitute a common corresponding 
pair of elements. (For the case in which both involutions are elliptic, see Young 
[1930], section 17, or Enriques [1915], section 37.) 
 
1.5 Two-dimensional collineations and correlations  
The primitive elements of three-dimensional projective space are points, lines and 
planes. Two primitive elements are called different, if they are distinct but of the 
same kind and dissimilar if they are of different kind (whether or not they contain 
each other is not part of this definition). 
The two-dimensional primitive forms are the field of points, the field of lines, the 
bundle of planes and the bundle of lines (see the introduction). One can classify 
correspondences between primitive forms that preserve the relation of primitive 
elements containing each other according to the following definitions. 
Definition A one-to-one correspondence between two two-dimensional primitive 
forms of the same kind is called a two-dimensional collineation if to two dissimilar 
primitive elements a, B containing each other of one primitive form there corre-
spond two dissimilar primitive elements a', B' containing each other of the other 
primitive form, such that a, a' and B, B' are each pairs of different primitive ele-
ments. 
Hence, in a collineation, ranges of points or pencils of planes correspond to ranges 
of points or pencils of planes, respectively, and pencils of lines correspond to pencils 
of lines such that the relation of primitive elements containing each other is pre-
served.  
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In particular, if one adds in a similar fashion the collineation between a field and a 
bundle, which is not covered by the definition above, the following cases of two-
dimensional collineations exist. 
 
(i) Field-Field: Points correspond to points and lines to lines. 
(ii) Field-Bundle: Points of the field correspond to lines of the bundle and 

lines of the field correspond to planes of the bundle. 
(iii) Bundle-Bundle: Lines correspond to lines and planes to planes.  
 
Definition A one-to-one correspondence between two two-dimensional primitive 
forms of the same kind is called a two-dimensional correlation if to two dissimilar 
primitive elements a, B containing each other of one primitive form there corre-
spond two dissimilar primitive elements A', b' containing each other of the other 
primitive form, such that a, A' and B, b' are each pairs of dissimilar primitive ele-
ments.  
Hence, in a correlation, ranges of points or pencils of planes correspond to pencils of 
planes or ranges of points respectively, and pencils of lines correspond to pencils of 
lines such that the relation of primitive elements containing each other is preserved.  
In analogy to the three cases of collineations, one has, in particular, the following 
three cases of two-dimensional correlations. Note again that the correlation between 
a field and a bundle is not covered by the definition above, but fits naturally into this 
context. (As an exercise, the reader may modify the above definitions such that they 
encompass the collineations and correlations between field and bundles.) 
 
(i) Field-Field: Points correspond to lines and lines to points. 
(ii) Field-Bundle: Points of the field correspond to planes of the bundle 

and lines of the field correspond to lines of the bundle. 
(iii) Bundle-Bundle: Lines correspond to planes and planes to lines. 
 
One can still handle collineations or correlations between two bundles or two fields 
as correspondences between different bundles or fields when the latter coincide. 
However, it is sometimes useful to refer to them as collineations or correlations of 
bundles or fields into themselves, in other words, as autocollineations or autocorre-
lations of bundles or fields (see section 1.6). 
The extension of the concept of projectivity from the one-dimensional case to 
higher-dimensional ones goes as follows. 
Definition A one-to-one correspondence between two two-dimensional primitive 
forms is called a two-dimensional projectivity, if it preserves the relation of primi-
tive elements containing each other, or, equivalently, if one-dimensional primitive 
forms correspond to one-dimensional primitive forms such that they are projective.  
The equivalence stated in this definition is due to the fact that harmonic sets of four 
elements are defined in terms of quadrangles and quadrilaterals (and their counter-
parts in bundles). Since collineations and correlations preserve the relation of primi-
tive elements containing each other and encompass all possible cases of such corre-
spondences, one concludes that they constitute exactly the set of all possible projec-
tivities. Projectivities between two-dimensional primitive forms are called two-
dimensional projectivities. 
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Definition Three primitive elements of the same kind are called linearly independ-
ent if they do not belong to one one-dimensional primitive form. Four primitive 
elements of the same kind belonging to a two-dimensional primitive form are called 
linearly independent if no three of them lie in one one-dimensional primitive form.  
With the foregoing material, the Fundamental Theorem of Two-dimensional Projec-
tive Geometry can now be stated as follows (for a proof, see Coxeter [1965], pp. 49–
52, or Locher [1940], pp. 195–197). 
Theorem 1.13 A two-dimensional projectivity exists and is uniquely determined if 
the elements of a set of four linearly independent primitive elements in one two-
dimensional primitive form correspond uniquely to the elements of a set of four 
linearly independent primitive elements in the other two-dimensional primitive form.  
For example, a collineation or correlation between two fields is uniquely determined 
by two corresponding quadrangles, or a quadrangle corresponding to a quadrilateral 
respectively.  
Theorem 1.14 A two-dimensional projectivity exists and is uniquely determined if 
two pairs of different one-dimensional primitive forms each lying in a two-
dimensional primitive form are projective such that the common element in one pair 
corresponds to the common element in the other.  
For example, two different pencils of lines, say, within a plane α which are projec-
tive to two different ranges of points in a plane β, uniquely determine a correlation 
between these two fields α and β, if the common line of the two pencils of lines 
corresponds to the common point of the two ranges of points. In fact, Theorem 1.14 
is equivalent to Theorem 1.13. This is easy to see and will be left as an exercise to 
the reader. 
 
1.6 Projectivities of fields or bundles into themselves:  
Two-dimensional autocollineations 
Projectivities between a field and a bundle give rise to projectivities of the field or 
bundle into themselves if one allows the field and the bundle to intersect or project 
each other respectively. In addition, two projective fields or bundles may coincide, 
thus producing a projectivity of these forms into themselves. According as these 
projectivities are collineations or correlations, they are called two-dimensional auto-
collineations or two-dimensional autocorrelations respectively. Autocorrelations 
will be treated in section 5.2. 
The following Theorem 1.15A is equivalent to the uniqueness property stated in the 
Fundamental Theorem of Two-dimensional Projective Geometry, Theorem 1.13. 
Theorem 1.15A If a collineation of a 
field into itself leaves four linearly in-
dependent points or lines invariant, the 
collineation is the identity. 

Theorem 1.15a If a collineation of a 
bundle into itself leaves four linearly 
independent planes or lines invariant, 
the collineation is the identity. 

Proof: Consider four linearly independent elements in a field (or in a bundle); ac-
cording to Theorem 1.13, there is a unique projectivity P which transforms each of 
these elements into itself. But the identity has the same property, hence P is the 
identity.  
In order to derive the uniqueness property stated in Theorem 1.13 from Theorem 
1.15, consider two corresponding sets, Q1 and Q2, of four linearly independent ele-
ments in a plane (or in a bundle). Then, according to the existence property stated in 
Theorem 1.13, there are two projectivities P1 and P2 such that P1(Q1) = Q2 and  
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P2
–1(Q2) = Q1. Since the projectivity P1P2

–1(Q2) = Q2, P1P2
–1 leaves the set Q2 invari-

ant, it must be the identity according to Theorem 1.15, or equivalently, one must 
have P1 ≡ P2. 
One concludes from Theorem 1.15 that a collineation of a field or a bundle into 
itself that is not the identity has at most three linearly independent invariant ele-
ments. But there is also a lower bound for the set of invariant elements. 
Theorem 1.16A Every autocollineation 
of a field [bundle] has at least one 
proper invariant point [line]. 

Theorem 1.16a Every autocollineation 
of a bundle [field] has at least one 
proper invariant plane [line]. 

Proof (left side): Coxeter [1965], p. 62; Enriques [1915], p. 265f. 
The following theorems give some more information as to how the invariant ele-
ments are arranged; they will help to find all possible classes of two-dimensional 
autocollineations. 
Theorem 1.17A If an autocollineation 
of a field has an invariant point, then it 
has an invariant line, and conversely. 

Theorem 1.17a If an autocollineation 
of a bundle has an invariant plane, then 
it has an invariant line, and conversely. 

Proof: This is an immediate consequence of the principle of duality (for a direct 
proof, see Enriques [1915], p. 149f., or Reye [1907], p. 70).  
Theorem 1.18A If a non-identical 
autocollineation of a field has the 
points of a range as invariant elements, 
then it has also the lines of a pencil as 
invariant elements, and conversely. 

Theorem 1.18a If a non-identical auto-
collineation of a bundle has the planes 
of a pencil as invariant elements, then it 
has also the lines of a pencil as invari-
ant elements, and conversely. 

Proof (left side): Consider a non-identical autocollineation of a field. Let z be the 
base-line of a range of invariant points. A pair of corresponding lines l and l' will 
meet in a self-corresponding point P = P' (Figure 1.3), hence l and l' are perspective 
(Theorem 1.4) and lines connecting corresponding points of l and l', e.g. A, A' and B, 
B', will pass through some point Z that may lie on z. All lines through Z are invari-
ant, since they contain an invariant point of z and a pair of corresponding points 
lying on l and l'. –  
Conversely, the existence of a pencil of invariant lines implies the existence of two 
perspective pencils of lines (the centers of which lie on an invariant line) and hence 
the existence of an invariant range of points. 

 
Figure 1.3 
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1.7 Classification of two-dimensional autocollineations 
In the following, a complete classification of two-dimensional autocollineations is 
given. Only the planar field will be discussed, since the autocollineations of a bundle 
can be derived from them by projecting the field from a point outside. To begin 
with, assume that the collineation is not the identity and that there exists an invariant 
point E1 (Theorem 1.16) and an invariant line e1 (Theorem 1.17) which does not 
pass through E1. In this case, the projectivity induced on e1 is either hyperbolic, 
elliptic, parabolic, or the identity, as one knows from one-dimensional projective 
geometry (section 1.2); hence one has the following classes (Ia), (Ib), (II), (III) 
(Figure 1.4). 
 
Class (Ia): General collineation 
Invariant points:  
E1, E2, E3 
Invariant lines:  
e1, e2, e3 

Figure 1.4 (Ia) 
 
Class (Ib) 
Invariant point:  
E1 
Invariant line:  
e1 
 
 
 

Figure 1.4 (Ib) 

Class (II) 
Invariant points:  
E1, E2 
Invariant lines:  
e1, e3 
 
 
 
 

Figure 1.4 (II) 

Class (III): Homology 
Invariant points:  
range of points e1 
Invariant lines:  
pencil of lines E1 

Figure 1.4 (III) 
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If all invariant points are contained in all invariant lines, then there is either more 
than one invariant line, or exactly one. In the first case, there exist at least two in-
variant lines and Theorem 1.17 implies that there are also at least two non-
coincident invariant points; but the only invariant point which is contained in both 
invariant lines is their intersection point, hence this case is impossible. In the second 
case, the collineation on the invariant line can only be parabolic or the identity, since 
two non-coincident invariant points are impossible (they would imply more than one 
invariant line, in contradiction to the assumption). Together with Theorem 1.18, this 
implies the following additional classes (IV), (V) (Figure 1.4). 
 
Class (IV) 
Invariant point:  
E2 
Invariant line:  
e1 
 

Figure 1.4 (IV) 

 
Class (V): Elation 
Invariant points:  
range of points e1 
Invariant lines:  
pencil of lines E2 
 
 
 
In addition, there is the identity: 
 

Figure 1.4 (V) 

Class (VI): Identity 
Invariant points:  
field of points 
Invariant lines:  
field of lines 

Figure 1.4 (VI) 
 
Hence one concludes that there are seven classes of two-dimensional autocollinea-
tions. The proofs of existence for the classes (Ib), (II), (IV) will be left to the reader. 
The classes (III) and (V) will be discussed without details in section 1.8. 
 
1.8 Two-dimensional perspective collineations 
Definition A collineation between a field and a bundle is called perspective if all 
pairs of corresponding elements contain each other.  
According to Theorem 1.13, this is the case if it is true for at least four linearly inde-
pendent elements. More interesting cases arise when collineations between two 
fields or two bundles are considered.  
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Definition A collineation between two fields or two bundles is called perspective, or 
a perspectivity, if there is at least one one-dimensional primitive form the elements 
of which are self-corresponding, that is, invariant. 
Theorem 1.19A If a collineation be-
tween two fields (that may coincide) has 
the points of a range as invariant ele-
ments, then it is perspective and the 
lines and planes of all joins of pairs of 
corresponding points and lines respec-
tively pass through one point. 

Theorem 1.19a If a collineation be-
tween two bundles (that may coincide) 
has the planes of a pencil as invariant 
elements, then it is perspective and the 
lines and points of intersection of all 
pairs of corresponding planes and lines 
respectively lie in one plane. 

The proof of Theorem 1.19A for a perspective collineation between the fields ε and 
ε' will be left as an exercise (see Figure 1.5). 

Figure 1.5 
 

With respect to a perspective collineation between two planes, the unique invariant 
point Z is called the center of perspectivity and the unique invariant range z the axis 
of perspectivity. In the case of a perspective collineation between two bundles, there 
is a unique axis and a unique axial plane. Perspective autocollineations are classified 
into elations or homologies according to whether the center respectively does or 
does not lie on the axis or axial plane. 
The easiest way to determine a perspectivity is expressed in the following Theorem 
1.20, the proof of which is also left to the reader. 
Theorem 1.20A A perspective collinea-
tion between two plane fields is uniquely 
determined by its center, its axis and a 
pair of corresponding elements. 

Theorem 1.20a A perspective collinea-
tion between two bundles is uniquely 
determined by its axial plane, its axis 
and a pair of corresponding elements. 

 
1.9 Two-dimensional involutions 
Definition Involutions are projectivities of fields or bundles into themselves with 
period two, in other words, projectivities which are equal to their own inverse.  
In this case the elements of the plane or the bundle respectively are ordered in dou-
bly corresponding or involutory pairs.  
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Definition A projectivity between a bundle and a field is called involutory, if the 
section of the bundle with the field or the projection of the field from the bundle 
generates an involution in the field or in the bundle respectively. 
 
1.9.1 Two-dimensional harmonic reflections 
A simple example of an involutory collineation is the involutory perspectivity. Let a 
perspectivity in a plane be given by a center Z, an axis z, and a pair of corresponding 
points Q, Q' such that ZQPQ' forms a harmonic set, where P = P' is the point of 
intersection of QQ' with z (Figure 1.6). Since harmonic sets correspond to harmonic 
sets, one has a projective relation between ZQPQ' and ZQ'PQ, and hence the per-
spectivity is involutory. It is called a harmonic homology or a harmonic reflection. 
As it turns out, this is the only two-dimensional involutory collineation. 
 

Figure 1.6 
 
Theorem 1.21 Every two-dimensional involutory collineation is a harmonic homol-
ogy.  
Proof: Coxeter [1955], p.64; Locher [1940], pp. 205f. 
 
1.9.2 Two-dimensional polarities 
Definition Involutory correlations of fields or bundles into themselves are called 
polarities. Corresponding points and lines, or lines and planes respectively, are 
called poles and polars.  
For more details on two-dimensional polarities, see section 3.3. 
 
1.10 Notes and references 
For more information on one- and two-dimensional projective geometry, see Coxe-
ter [1955], Meserve [1955], Cremona [1885], Locher [1940][1957], Reye [1909], 
Veblen/Young [1910], Young [1930], Ostheimer/Ziegler [1996], Bernhard [1984], 
Edwards [1985]. 
The synthetic theory of imaginary or complex elements starts with von Staudt 
[1856][1857][1860]. For discussions of this theory, see Coolidge [1924], Juel 
[1934], Locher [1940][1970], Reye [1909]. 
The classification of two-dimensional autocollineations can also be be found in 
Baldus [1928], Newson [1897] [1899]. For an algebraic treatment on the basis of 
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path curves, see Boer [2004]. A history of elementary projective geometry can be 
found in Kötter [1901]. 
 
Publication of earlier parts of this series of papers in the journal «Mathematisch-
Physikalische Korrepondenz»: 
Introduction, references, and index: 2005, 222: 31–48.  
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