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Preface 
The following chapters are a contribution to visual geometry, mainly three-dimensional 
projective geometry and line geometry. The development of flexible geometric thinking 
seems to be somewhat neglected nowadays in the training of mathematicians and scientists 
in general. But the need for engineers and scientists who feel comfortable with the subtle-
ties of spatial geometry is apparent, even in spite of the now available computer-aided 
methods of graphic design. And there may be no better way to get deeply involved in spa-
tial geometry than in exercising the skills of visual representation by the means of synthetic 
geometry. Thus I have adopted the synthetic method, which forms a characteristic feature of 
this presentation. 
Some experts identify the synthetic method with the axiomatic method, but I would rather 
emphasize that the synthetic method deals directly with the properties of the geometric 
objects themselves without representing them in terms of other objects, for example, in 
algebraic equations. Of course, one often arrives much faster at geometric results or propo-
sitions by applying some kind of algebraic symbolism, but, during the process, the geomet-
ric object in question can disappear very easily from our imagination. – This approach 
might be unfamiliar to many readers, but I know of nothing else that trains the geometric 
intuition more effectively than synthetic geometry. 
Another characteristic feature of this presentation is the approach to Euclidean geometry, 
which is not conceived as a primitive space form but is consistently treated as a certain kind 
of limiting case of general projective metric geometry. Not only can this be of practical 
importance, but it will particularly refine and clarify the logical skills and the basic con-
cepts of geometry. In addition, it helps one keep an open mind with respect to new ideas 
and techniques which might be of special significance in the future. 
The reader is expected to be familiar at least with the fundamentals of plane projective 
geometry. Since there are many good textbooks on this subject in the English and German 
literature (see the references), it is not difficult to fill in the necessary details and supple-
mentary information. 
I discuss many topics that have never been treated comprehensively elsewhere in the Eng-
lish literature. In particular, this includes the synthetic treatment of quadratic surfaces, the 
complete classification and subsequent discussion of collineations in three-dimensional 
projective space, as well as the discussion of congruences and their relation to cubic space 
curves. 
The theory of complex elements, or imaginary elements as they are called in this text, is not 
treated in any systematic way. There are occasional remarks for the informed reader but no 
comprehensive account of the theory of imaginary points, lines or planes, or of imaginary 
quadratic surfaces. This would call for a special treatise which goes well beyond the level 
and scope I intended for this text. 
There are no formal exercises but the reader is encouraged again and again to carry out 



 32

details in proofs, think about special cases of general theorems, dualize theorems as well as 
proofs, and look for affine and Euclidean (or even polar-Euclidean) specializations. This 
provides enough material to think about and to get the taste and practice of doing synthetic 
projective geometry. In addition, the reader would do well to make his or her own drawings 
as much as and as often it seems appropriate. 
This presentation of three-dimensional projective geometry starts with a short introduction 
to fundamental concepts and methods of projective geometry. Chapter 1 provides an ac-
count of two-dimensional projective geometry which is supposed to serve as an introduc-
tory reminder rather than a comprehensive overview. Many theorems are mentioned with-
out proofs and some important topics are not discussed.  
Chapter 2 contains a discussion of three-dimensional projectivities including their complete 
classification. Chapters 3 and 4 cover the theory of curves and cones as well as quadratic 
surfaces and polarities. In chapter 5, the theory of involutory collineations and correlations 
is worked out in detail; these involutions give rise to some important families of lines.  
Chapter 6 covers the foundations of projective metric geometry which are used throughout 
the text to specialize general projective properties to metric ones, in particular, to Euclidean 
properties. This chapter contains only the material needed for this specialization; there is, of 
course, much more to be said about non-Euclidean geometry. 
Some fundamental notions of line geometry are introduced in chapter 7. Chapters 8 and 9 
give a rather complete treatment of the most important linear families of lines, namely 
linear complexes and linear congruences. Chapters 10, 11 and 12 treat families of lines 
generated by collineations between primitive forms. This includes as special cases linear 
congruences, but goes beyond them to congruences of higher order and class which are 
connected with cubic space curves. Chapter 12 culminates in the proof of the existence of at 
least one proper (real) invariant line for any collineation in three-dimensional projective 
space. Chapter 13 covers non-Euclidean, affine and Euclidean properties of linear families 
of lines. 
Chapters 14, 15 and 16 go deep into the geometry of linear complexes and their linear sys-
tems of lines within three-dimensional projective space, culminating in chapter 17 with the 
introduction of the five-dimensional linear manifold of linear complexes. 
This text, published here as series of papers, can serve at least two purposes: to refresh the 
memory of someone familiar with projective geometry concerning the beautiful world of 
three-dimensional projective geometry and enhance his or her imagination, and to get one-
self involved again in thinking it all through once more. On the other hand, someone not 
familiar with this kind of geometry is provided with guidance right into the heart of the 
matter, or rather, the heart of the «projective spirit». From there one can start to delve into 
more detailed or specialized literature (see the notes and reference section at the end of 
each chapter) and/or consider some applied work, for example, by George Adams 
[1977][1996], Peter Gschwind [1989][1991][2000][2004], Lawrence Edwards [1986] 
[1993], Nick Thomas [1999]. 
 
History of the text and acknowledgements 
Originally, this text was intended as a translation of my Synthetische Liniengeometrie 
[1981]. In working through my book again, a rough translation made by Amos 
Franceschelli (Spring Valley, New York) was very useful, but I soon realized that I had to 
rewrite most parts of it. Finally, a new text emerged. It was Joseph Duffy, Director of the 
«Center for Intelligent Machines and Robotics» at the University of Florida in Gainesville, 
who encouraged me to undertake the laborious process of rewriting my old book and pro-
vided me with the financial resources to complete the major parts of it while working in his 
Center during the academic year 1985/86. The manuscript was nearly completed during a 
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research sojourn in the Department of Physics at Arizona State University in Tempe 
1986/87. A final version was produced in my first year 1987/88 at the Mathematical-
Astronomical Section at the Goetheanum in Dornach, Switzerland, but has never been 
published. 
Many thanks go to my students and colleagues at the University of Florida, as well as to 
Peter Gschwind and Arnold Bernhard, who provided a warm and resourceful audience for 
expounding my thoughts. Last but not least, this text owes much to the spirit and work of 
Theodor Reye (1839–1919), George Adams (1894–1963), and Louis Locher (1906–1962), 
none of whom did I ever meet in person, but who nevertheless deeply influenced my own 
thinking through their work (for biographical and bibliographical information on Adams 
and Locher, see Ziegler [2001]). 
Peter Gschwind, the new editor of the «Mathematisch-Physikalische Korrespondenz» since 
1999, provided me with the opportunity to make this manuscript available in print as a 
series of papers. In reworking my text thoroughly beginning in 2003 up to 2005, I rewrote 
and rearranged some parts to make it intuitively more accessible and added some references 
to the recent literature.  
Considering the vast amount of work that has been done already in the late 19th and early 
20th century in the field of three-dimensional projective geometry, there is essentially noth-
ing new in this text. However, some topics have never been treated thoroughly and system-
atically within the mathematical literature inspired by Rudolf Steiner's spiritual science or 
anthroposophy, particularly not in the English language (with one partial exception:  
Edwards [1985]). These topics include the complete classification of projectivities in three-
dimensional projective space (chapter 2), the projective theory of quadratic surfaces in 
three-dimensional projective space (chapter 4), and, in particular, non-linear families of 
lines generated by collineations between bundles and fields (chapter 10), including twisted 
cubics and cubic developables (chapter 11), and collineations in three-dimensional projec-
tive space that generate tetrahedral quadratic complexes (chapter 12). 
Many thanks are also due to Alec Schaerer and Marius Oosterveld for producing a rough 
typescript from the original manuscript that was partly written by typewriter and corrected 
by hand. Christoph Jäggy helped me with scanning the figures, some of which were taken 
from my «Liniengeometrie», but many were drawn by hand especially for this new text. 
The English proofreading has been done by John O'Brien, which is very much appreciated. 
In addition, Lou de Boer was kind enough to check the text mathematically; he contributed 
valuable suggestions for improving the text which resulted in some major revisions. How-
ever, all remaining errors and vague formulations are in the sole responsibility of the au-
thor.  
 
Preview of following chapters 
1.  Projectivities between primitive forms of one and two dimensions 
2.  Projectivities in three-dimensional space 
3.  Introduction to curves and surfaces in three-dimensional projective space 
4. Surfaces of the second degree in three-dimensional projective space 
5.  Involutory collineations and polarities in three-dimensional projective space 
3.  Foundations of three-dimensional Euclidean and non-Euclidean geometry 
7.  Fundamental notions of line geometry in three-dimensional projective space 
8. Linear complexes of lines in three-dimensional projective space 
9. Linear congruences of lines in three-dimensional projective space 
10.  Families of lines in three-dimensional projective space generated by collineations 

between bundles and fields 
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11.  Twisted cubics and cubic developables in three-dimensional projective space 
12.  Collineations in three-dimensional projective space: tetrahedral quadratic complexes 
13.  Non-Euclidean, affine and Euclidean properties of linear families of lines in three-

dimensional projective space 
14. Reciprocal linear complexes in three-dimensional projective space 
15. Linear systems of linear complexes in three-dimensional projective space 
16. Three-systems of linear complexes and their induced polarities in three-dimensional 

projective space 
17. The five-dimensional linear manifold of linear complexes 
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Preliminaries 
1. Axioms and primitive elements 
In three-dimensional synthetic projective geometry the primitive undefined elements are 
«points», «lines» and «planes» which are related by the axioms in terms of containing each 
other as well as according to some notions of «order» and «continuity». «Containing each 
other», particularly «passing through» and «lying in» as well as «order» and «continuity» 
will not be defined explicitly here, since they are determined implicitly by the axioms. 
These concepts are thought to have intuitive significance and thus provide justification for 
the endeavors in which I am about to embark. In other words, I think that it is important 
that there is some interpretation in which the axioms are seen to be true – otherwise one 
would be playing a meaningless game. 
Following Locher [1940], the axioms for three-dimensional projective geometry can be 
formulated in a form that clearly reflects their intuitive origins but leave nothing to be de-
sired as to their logical strictness and completeness (see Appendix 2, 3 and 4). However, I 
am not concerned about their independence since this does not add anything to their under-
standing but merely complicates the path of reasoning. For strict axiomatic treatments of 
projective geometry that deal with such problems as consistency, completeness, categori-
calness and independence I must refer to the literature, for example Veblen/Young [1910] 
or Forder [1927]. An excellent axiomatic treatment of two-dimensional projective geometry 
can be found in Coxeter [1955], which provides a valuable supplement to the approach 
presented in this series of papers. 
There is no point in repeating elementary details here, since our main goal is not so much 
the treatment of the axiomatic foundations of projective geometry as the exploration of 
some of the implications of these axioms in three-dimensional projective space. In other 
words, I must assume the reader to be familiar with elementary projective geometry and 
thus willing to follow me without hesitation through a quick review of one-dimensional and 
two-dimensional projective geometry in order to delve more completely into the figures 
and transformations of three-dimensional projective space. 
The primitive forms of three-dimensional projective geometry encompass the range of 
points, the pencil of lines, the pencil of planes, the field of points, the field of lines, the 
bundle of planes, the bundle of lines and the pencil of lines (Appendix 1). They represent 
all cases in which each of the primitive elements, point, line and plane, are generated by a 
totality of infinitely many primitive elements of different kinds. The underlying primitive 
elements of such a primitive form are called its base or bearer, or, in the case of bundles 
and pencils of lines, its center. For example, the base or bearer of a range of points is the 
line which contains all the points of the range, etc. With one exception, the pencil of lines, 
all primitive forms have exactly either one base or one center. 
Primitive forms are classified according to their dimension (see Appendix 1): the primitive 
forms of the first dimension are: range of points, pencil of lines and pencil of planes; the 
primitive elements of the second dimension are: field of points, field of lines, bundle of 
planes and bundle of lines. 
Projection and intersection have the usual meaning. For example, a point outside a range of 
points projects this range in a pencil of lines; a pencil of planes intersects a line in a range 
of points; a bundle of lines intersects a plane in a field of points, etc. 
 
2. The principle of duality in three-dimensional projective geometry 
An inspection of the axioms of three-dimensional projective geometry as formulated in 
Locher [1940] reveals a perfect symmetry with respect to points and planes (see Appendix 
2, 3 and 4). In particular, to every statement about points, lines and planes and their rela-
tions corresponds a statement about planes, lines and points, respectively. If one employs 
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only the expression «incident» or «in common» to describe the various relationships be-
tween primitive elements, one could directly transform a given statement into another valid 
statement by exchanging the words «plane» and «point». But for the sake of concrete ex-
pressions I use the terms «pass through», «lies in», etc. which have to be exchanged ac-
cordingly. Statements that are related in such a way that they can be transformed into each 
other by the procedures described above are called dual (with respect to three-dimensional 
projective geometry). 
Given the self-dual character of the set of axioms, the principle of duality asserts that to 
every theorem derived from these axioms there corresponds a dual theorem that can be 
proved by dualizing the original proof, that is, rewording it in accordance with the ex-
change of «point» and «plane». Strictly speaking, the principle of duality is not a theorem 
of the formal theory of projective geometry, if by «formal theory» one means only the 
statements that can be derived from the axioms. The principle of duality does not involve 
only points, lines, planes and relations, but, in fact, it is a theorem about theorems, prov-
ability etc., in other words, a metatheorem. This was, for example, pointed out by Lakatos 
[1978] in the context of demonstrating the fruitfulness of informal arguments for enriching 
a given formal theory. 
The principle of duality in three-dimensional projective geometry implies similar principles 
for two-dimensional projective geometry in a plane or in a point. The resulting relation-
ships give rise to a host of beautifully interconnected theorems and figures (for some de-
tails, see Locher [1957], p. 25). 
Typographically, dual theorems are presented in double columns. In order to save space 
and avoid repetition, however, dual statements are not made explicitly in full at some 
places, but only indicated by some key expressions in square brackets which are to replace 
the immediately preceding ones. 
The true simplicity of the principle of duality misleads many geometers to concentrate on 
only one aspect of projective geometry, namely the statements in which points play a 
dominant role. This bias is a consequence of our initial training in Euclidean geometry. As 
a consequence, the expanding of the dual theory was badly neglected with the excuse that it 
involves only a mechanical translation process. This is absolutely correct from a formal 
point of view, but does not give credit to the full experience and appreciation of the content 
of projective geometry. Anyone who tries to grasp intuitively the dual of a given statement 
concerning point configurations experiences serious difficulties in elevating his imaginative 
mind beyond formal insight into the bare logical structure. After some training, however, 
the effort is well rewarded by the ethereal beauty which reveals itself in the realm of the 
«geometry of planes» in contrast to the more worldly beauty of the «geometry of points» to 
which one is accustomed since elementary and high school days. 
It is for this reason that I have not hesitated to include in most (though not all) places the 
dual statements as well. I want the reader to have constantly in mind the inherent symmetry 
of projective geometry based on the principle of duality. And I wish to emphasize that this 
symmetry is not merely a trivial feature of the formal structure but something that is worth 
studying in itself, thus leading possibly to new forms of experience. 
 
3. Order and continuity 
The axioms of order and continuity (see Appendix 4) specify the arrangement of the infi-
nitely many elements of a one-dimensional primitive form. There are many different ap-
proaches for the characterization of order and continuity, depending on what concepts are 
taken as primitive, or undefined. Here the system of axioms developed by Locher [1952] is 
adopted, since it is very intuitive and particularly well suited to the foundations of synthetic 
geometry and synthetic kinematics. The primitive concepts are the move of an element 
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within a one-dimensional primitive form and the order of a finite number of elements, that 
is, their numbering. 
The axioms of order and the axiom of continuity (OC) are summarized below in Appendix 
4. Based on Axiom (i), sense is defined as follows. 
Definition If A, B, C are three elements of a one-dimensional primitive form and if a move 
starting at A passes the elements B and C in the order BC, then the move has the sense ABC.  
Axiom (ii) tells that for any finite set of elements there is a unique order or numbering; it is 
called the natural order of this set with respect to the starting element A and the sense ABC.  
Definition If ABXC is in natural order with respect to the sense ABC, then X is said to be 
between B and C with respect to A, or, equivalently, B and C are said to be separated by A 
and X. 
Definition and Theorem 1 Two elements A, B of a one-dimensional primitive form sepa-
rate the set of all elements of this form into exactly two segments; each element X in one 
segment is separated from each element in the other segment with respect to A, B. 
Proof: Let C be an element of the given primitive form which does not coincide with A or 
B, and let any element move through this form starting from A with the sense ABC. All 
elements, except A, that are passed before one arrives at B form the one segment; all re-
maining elements, except B, the other segment. If X is an element of the first and Y an ele-
ment of the second segment, then AXBY represents a natural order, hence A, B and X, Y are 
separated. 
The two segments of a one-dimensional primitive form determined by two of its elements A 
and B are denoted by [AB] and ]AB[. 
Definition Consider a segment of a one-dimensional primitive form having a sense that 
contains an infinite sequence of elements P1, P2, P3, P4, ... such that every Pi lies before 
Pi+1. Such a sequence is called monotone. A limit element L of such a sequence is an ele-
ment L such that between Pk and L with respect to Pk–1 lie infinite many elements for every 
k > 1. 
Theorem 2 Every monotone sequence of elements within a segment of a one-dimensional 
primitive form has exactly one limit element. 
Proof: Take P1, P2, P3, ... as a monotone sequence of elements within a segment [AB] such 
that AP1P2 ... B is in natural order. This sequence implies a separation of the elements of the 
primitive form in two sets X, Y such that every element of [AB] that lies before any ele-
ment of the sequence constitute the set X and the remaining elements of the primitive form, 
except A, constitute the set Y. Then Axiom (vi) implies the existence and uniqueness of an 
element L within X or Y such that AXLY is in natural order for every X ∈ X and Y ∈ Y. 
Since ]AB[ does only contain elements of Y, L is either identical with B or lies within [AB]. 
In either case, since all Pi's lie in X, L must be a limit element. 
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Appendix 
 
1. Primitive elements and primitive forms of three-dimensional projective geometry 
The expression «infinitely many» in the formulation of the axioms below needs further 
specification. Fields, for example, contain infinitely many points and lines; but they also 
contain infinitely many ranges of points and pencils of lines. Obviously, «infinite» is used 
here with two slightly different meanings. To clarify this, by definition, the primitive forms 
are classified according to their dimension. For this purpose, the symbol «∞n», n = 0, 1, 2, 
3, …, is introduced to represent the «degree of freedom» of the number of primitive ele-
ments contained in them. For example, fields of lines are primitive forms of two dimen-
sions and contain ∞2 lines. In section 7.1 the subject of primitive forms is discussed from a 
different perspective and studied in more detail: how they are interrelated with each other, 
as well as how they give rise to higher-dimensional primitive forms. 
 
Definition Primitive elements and primitive forms  
of three-dimensional projective geometry 
 

 Dimension «Number» of primitive elements 
Primitive elements   

point 
line 

plane 

0 
0 
0 

∞0 = 1 
∞0 = 1 
∞0 = 1 

Primitive forms   
range of points 
pencil of lines 

pencil of planes 

1 
1 
1 

∞1 
∞1 
∞1 

field of points 
field of lines 

bundle of planes 
bundle of lines 

2 
2 
2 
2 

∞2 
∞2 
∞2 
∞2 

space of points 
space of planes 
space of lines 

3 
3 
4 

∞3 
∞3 
∞4 

 
2. Axioms for primitive elements containing each other (I)  
for three-dimensional projective geometry 
In a line lie infinitely many points: the line 
appears as range of points. 
In a plane lie infinitely many points: the 
plane appears as field of lines. 
In a plane lie infinitely many lines: the 
plane appears as field of lines. 
Through a point lying in a plane pass infi-
nitely many lines which lie in the plane, 
forming a pencil of lines. 
If a line lies in a plane, then every point of 
the line (as a range of points) lies in this 
plane.  

Through a line pass infinitely many planes: 
the line appears as pencil of planes.  
Through a point pass infinitely many planes: 
the point appears as bundle of planes. 
Through a point pass infinitely many lines: 
the point appears as bundle of lines. 
In a plane passing through a point lie infi-
nitely many lines which pass through the 
point, forming a pencil of lines. 
If a line passes through a point, every plane 
of the line (as a pencil of planes) passes 
through the point.  
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If a point lies in a plane, not every line of 
the point (as a bundle of lines) lies in the 
plane. 
If a point lies in a line, not every plane of 
the point (as a bundle of planes) passes 
through the line. 

If a plane passes through a point, not every 
line in the plane (as a field of lines) passes 
through the point. 
If a plane passes through a line, not every 
point of the plane (as a field of points) lies 
on the line. 

 
3. Axioms of connection and axioms of intersection (CI)  
for three-dimensional projective geometry 
Two distinct points have exactly one line 
in common which passes through both 
points: the join of the two points. 
A point and a line not passing through it 
have exactly one plane in common which 
passes through the point and the plane: the 
connecting plane of the point and the line. 

Two distinct planes have exactly one line in 
common which lies in both planes: the inter-
section line of the two planes. 
A plane and a line not lying in it have exactly 
one point in common which lies in the plane 
and in the line: the intersection point of the 
plane and the line. 

Two distinct lines have either exactly one intersection point (which lies in both) and ex-
actly one connecting plane (which passes through both) or neither an intersection point nor 
a connecting line. In the last case they are called skew. 
 
4. Axioms of order and axiom of continuity (OC)  
for three-dimensional projective geometry 
(i) For every move of an element within a one-dimensional primitive form starting with an 
element A there exists an opposite move starting with A with the following properties: If the 
first move passes two distinct elements B, C in the order BC, then the opposite move passes 
them in the order CB. 
(ii) If the starting element A and the sense ABC of a move are given, then the order of any 
finite number of elements which are passed by this move is uniquely determined. 
(iii) If A, B, C are three elements of a one-dimensional primitive form, then there are infi-
nitely many elements X that are between B and C with respect to A. 
(iv) If AA1A2 … AkBB1B2 … BlCC1C2 … Cm is a set of elements in natural order with start-
ing element A and sense ABC, then BB1B2 … BlCC1C2 … CmAA1A2 … Ak is the natural 
order of these elements with respect to the starting element B and sense BCA. 
(v) The natural order of any set of elements of a one-dimensional primitive form is invari-
ant under projection and intersection. 
(vi) Axiom of continuity: Let A be an arbitrary element of a one-dimensional primitive form. 
Let the totality of the remaining elements of the primitive form be separated into two sets X 
and Y of elements such that every element belongs to exactly one of these sets and AXY 
represents for every X ∈ X and Y ∈ Y the same sense. Then there exists within the elements 
of X or Y exactly one element L such that AXLY is in natural order, independently of the 
choice of X and Y, as long as they do not coincide with L. 
 
5. Notes and references 
For a more thorough discussion of the concepts mentioned in this introduction, including 
the axiomatics of projective geometry, see Coxeter [1955] [1965], Locher [1940] [1957], 
Cremona [1885], Forder [1927], Robinson [1940], Veblen/Young [1910], Veblen [1918]. 
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 projective generation  8.3 
 reciprocal  14.1, 14.2 
 reguli  8.4 
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 root  14.2, 15.1 
 root pencil  15.1 
 root three-system  15.1 
 self-reciprocal  14.1, 17.4.1 
 singular elements  8.1, 8.2 
 special  8.2, 13.2.4, 14.1, 14.2 
 symmetry  13.2.2 
 system → system of linear complexes 
linear congruence  5.1.3, 7.4, 9.1 
 biaxial involution 9.6, 14.1, 14.2 
 classes  9.4, 10.2.2, 10.3.2 
 directrix  9.3 
 elliptic  5.1.3, 9.4 
 Euclidean center  13.4.1 
 Euclidean central axis  13.4.1 
 hyperbolic  5.1.3, 9.4 
 non-Euclidean central axes  13.3 
 parabolic  2.2.2, 9.4 
 parameter  13.4.3 
 projective generation  9.3, 10.2.2, 10.3.2 
 reguli  9.5 
 rotational symmetry  13.4.2 
 singular elements  5.1.3, 7.4, 9.1, 10.266.2, 10.3.2 
 special  9.2, 13.4.4 
 symmetry  13.4.1 
 vanishing plane  13.4.1 
linear families of linear complexes → system,  

→ flat, → star 
linear family of lines  7.3, 7.4 
linear manifold  17.1 
linear manifold of complexes  17.2 
linear space  17.1 
linearly independent flats  17.2 
linearly independent linear complexes  15.2 
linearly independent lines  7.3, 8.5 
linearly independent points, lines and planes 
 two-dimensional  1.5 
 three-dimensional  2.1, 7.3, 17.1 
lines of contact  4.3 
 
 
Manifold → linear manifold 
Möbius tetrahedra  5.5.1 
model of projective geometry  6.1, 6.2, 6.5 
multiple degenerate surface  4.2 
 
 
Natural order  A.4 
non-Euclidean central axes of a linear congruence  

13.3 
non-Euclidean geometry, non-Euclidean space  6.5 
 axiom (NE)  6.5.1 
non-Euclidean principal axes of a linear complex  13.1 
non-Euclidean principal axes of a pencil of linear 

complexes  13.5.1 
normal → orthogonal 
null-invariant  14.1 
null line  8.5 
null plane  5.5.1, 8.5 
null point  5.5.1, 8.5 
null polar  5.5.1, 8.4 
null polarity  5.3, 5.5, 8.5, 11.4 
 degenerate  8.5 

 invariant elements  14.1 
 null-polar lines  5.5.1, 8.4, 14.1 
 → linear complex 
 
 
Opposite projectivity  1.2 
order  0.3, A.4 
order of a complex  7.4 
order of a congruence  7.4, 10.2.1 
order of a curve  3.1 
order of a developable  3.1 
order of ruled surface  7.4.1 
orthogonal  6.3.1, 6.5 
orthogonal involution  6.4.2, 6.4.3 
orthogonal polarity  6.4.3 
osculating biplanar  3.1, 10.3.4, 11.2, 11.3 
osculating bisecant  3.1, 10.2.4, 10.3.4, 11.2, 11.3 
osculating plane  3.1, 11.3 
osculating point  3.1, 11.3 
 
 
Pairwise reciprocal linear complexes  14.2 
parabola  6.4.2 
parabolic linear congruence  2.2.2, 9.4 
parabolic pencil of linear complexes  9.7 
parabolic projectivity  1.2 
paraboloid  6.4.3 
 elliptic  6.4.3 
 equilateral hyperbolic  6.4.2 
 hyperbolic  6.4.2, 6.4.3 
parameter of a linear complex  13.2.3 
parameter of a linear congruence  13.4.3 
parallel  6.3.1 
pencil  A.2 
pencil of linear complexes  9.7, 14.2 
 cylindroid  13.6.2, 13.6.3 
 elliptic  9.7 
 Euclidean principal axes  13.5.2 
 hyperbolic  9.7 
 non-Euclidean principal axes  13.5.1 
 parabolic  9.7 
 special  9.7 
perpendicular → orthogonal 
perspective  1.3 
perspective to a curve  3.1, 11.1 
perspective to a developable  3.1, 11.1 
perspectivity 
 one-dimensional  1.3 
  axis, center  1.3 
 two-dimensional  1.8 
  center, axis and axial plane  1.8 
  harmonic reflection  1.9.1 
 three-dimensional  2.2.1, 2.2.2, 2.3 
  center, axial plane  2.3 
  harmonic reflection  5.1.2 
pivot point → osculating point 
planar position of planes  6.4.2 
plane-arc   3.1 
plane curve  3.2 
point-arc  3.1 
point of contact  3.1, 4.3 
polarity (regular) 
 two-dimensional  1.9.2, 3.3 
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  classes  3.3 
  elliptic  3.3 
  hyperbolic  3.3 
  orthogonal  6.4.3 
  polar triangle  3.3 
  pole and polar  3.3 
  self-conjugate elements  3.3 
 three-dimensional  5.3, 5.4 
  classes  5.4.2 
  conjugate lines  4.7, 5.4 
  conjugate planes  4.7, 5.4 
  conjugate points  4.7, 5.4 
  polar lines  4.6, 5.2 
  polar tetrahedron  4.8, 5.4.1 
  pole and polar  4.5, 5.4 
  self-conjugate elements  4.7, 5.4 
  three-system of linear complexes  16.2 
  tangential tetrahedron  4.8 
 five-dimensional  17.4.2 
polar lines (polarity)  4.6, 5.2 
polar tetrahedron  4.8, 5.4.1 
 classes  5.4.2 
polar triangle  3.3 
pole and polar  3.3, 4.5, 5.4 
position of planes  6.3.1 
position of points  6.3.1 
primitive element  0.1, A.1, A.2 
primitive form  0.1, A.1, A.2, 7.1, 7.2 
principle of duality → duality 
projection  0.1 
projective → projective correspondence 
projective correspondence  1.1, 1.2, 1.4, 6.1, 9.7 
 one-dimensional  1.1, 1.2, 1.6, 6.1, 9.7 
  direct  1.2 
  elliptic  1.2 
  hyperbolic  1.2 
  invariant element 1.2 
  opposite  1.2 
  parabolic  1.2 
 two-dimensional  1.5 
  collineation  1.5, 1.6, 1.7 
  correlation  1.5, 5.2.1 
  invariant element  1.6 
 three-dimensional  2.1, 6.1 
  collineation  2.1, 2.2  
  correlation  2.1, 5.2.2 
  invariant element 2.2.1, 2.2.2 
  invariant lines  12.4 
projectivity → projective correspondence 
projective invariant  6.1 
projective movement  6.2 
proper  1.2, 2.2.2 
proper bisecant  10.2.4 
proper biplanar  10.3.4 
proper cone  3.2.1 
proper conic  3.2.1 
proper surface → rational surface 
pseudo-Euclidean geometry, or pseudo-Euclidean 

space  6.3.1, 6.6 
 axiom (P)  6.3.1 
 
 
 

Quadratic complex  7.4, 12.1 
quadratic surface → surface of the second degree 
quadrics → surface of the second degree 
 
 
Rational complex  7.4 
rational cone  3.1 
rational curve  3.1 
rational developable  3.1 
rational ruled surface  7.4 
rational surface of the second order  4.1, 5.4.2 
rational surface of the second class  4.1, 5.4.2 
rational surface of the second degree  4.6, 5.4.2 
reciprocal linear complexes  14.1 
 pairwise  14.2 
real → proper 
regulus  3.2.2 
 associated  3.2.2 
 directrix  3.2.2 
 generators  3.2.2 
 perspective to a curve  3.2.2 
 perspective to a developable  3.2.2 
 perspective to a pencil of lines  3.2.2 
 perspective to a range of points  3.2.2 
right-angle involution → orthogonal involution 
right-angle polarity → orthogonal polarity 
root complex  14.2, 15.1 
 special  15.3 
root pencil → system of linear complexes 
root three-system  15.1 
ruled hyperboloid → hyperboloid of one sheet 
ruled surface  7.4 
 class  7.4 
 degree  7.4 
 order  7.4.1 
 rational  7.4 
ruled surface of the second degree  3.2.2 
 affine classification  6.4.2 
 Euclidean classification  6.4.2 
 rational  4.1, 5.4.2 
ruled surface of the third order  13.6.2 
ruler  3.2.2 
 
 
Segment  3.1 
self-conjugate element of a polarity  3.3, 4.7, 5.4 
self-corresponding → invariant 
sense  0.3 
singular points and planes 
 congruences  7.4, 10.2.1, 10.3.1 
 linear congruences  5.1.3, 9.1, 9.2 
 linear complexes  8.1, 8.2 
 tetrahedral quadratic complexes  12.2 
six-system → system 
skew collineation → biaxial collineation 
skew lines  A.3 
skew pentagon  5.5.1 
space curve  3.1 
space curve of the third order  10.2.4 
special linear complex  8.1, 8.2, 8.5, 13.2.4 
 directrix  8.2, 8.5 
 null-invariant  14.1 
 reciprocal  14.1 
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special linear congruences  9.1, 9.2, 13.4.4 
special pencil of linear complexes  9.7 
special root complex  15.2 
standard model → model 
star  17.1 
 zero-star  17.1 
 one-star  17.1 
 two-star  17.1 
 three-star  17.1 
 four-star  17.1 
surface of the second degree  3.2.2, 4.1, 4.6, 5.4.2, 

6.4.2, 6.4.3, 7.4 
 affine classification  6.4.2, 6.4.3 
 classification  4.2, 4.4 
 conjugate points, lines and planes  4.7 
 degenerate  4.2, 4.4 
 dual-affine classification  6.4.2, 6.4.3 
 dual-Euclidean classification  6.4.3 
 Euclidean classification  6.4.2, 6.4.3 
 improper  5.4.2 
 polar tetrahedron  4.8, 5.4.1 
 pole and polar  4.5 
 proper  5.4.2 
 rational  4.1, 4.6, 5.4.2 
 ruled  3.2.2, 4.4 
 tangential tetrahedron  4.8 
symmetric group  6.2 
system of linear complexes  14.2, 15.1, 15.2 
 reciprocal  14.1 
 special  15.3 
 two-system → pencil 
  linear combination  15.1 
  root  15.1 
  special  15.3 
 three-system  15.1, 16.1, 16.2, 16.3 
  degenerate  15.3 
  induced polarity  16.2, 16.3 
  induced projectivity  16.1 
  linear combination  15.2 
  projective  16.1 
  root  15.1 
  special  15.3 

 four-system  15.1 
  linear combination  15.2 
  root pencil  15.1 
  special  15.3 
 five-system  14.2, 15.1 
  linear combination  15.2 
  root  14.2 
  special  14.2, 15.2, 15.3 
 six-system  15.2 
  special  15.3 
  root  15.1 
  pencil  15.1 
  special  15.2 
  three-system  15.1 
 
 
Tangent line  3.1, 4.3, 10.2.4, 10.3.4, 11.2, 11.3 
tangent plane  3.1, 4.3, 11.3 
tangential tetrahedron  4.8 
tetrahedral quadratic complex  12.1 
 fundamental plane  12.1 
 fundamental point  12.1 
 fundamental tetrahedron  12.1 
 singular element  12.2 
three-system → system 
transformation group  6.2 
twisted cubic  10.2.4, 11.1 
 associated  12.1 
 bisecant  10.2.4, 10.3.4 
 conjugate points  11.2 
 tangent  10.2.4, 10.3.4 
 
 
Uniaxial collineation  2.2.1, 2.2.2 
uniplanar  3.1 
unisecant  3.1, 11.1 
universal line quadric  17.4.2 
 
 
Vanishing plane of a biaxial involution  13.4.1 
vanishing plane of a linear congruence  13.4.1 
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