Mathematik und Logik / Mathematics and Logic

Mengenlehre und Logik / Set Theory and Logic

English

Deutsch

Projektive Geometrie / Projective Geometry

Deutsch

English

The following papers are all published in: Projective Geometry and Line Geometry. Dornach: Philosophisch-Anthroposophischer Verlag am Goetheanum 2012. (Mathematisch-Astronomische Blätter, Neue Folge, Band 28).

  • Selected topics in three-dimensional projective geometry: Introduction, references and index.
    Mathematisch-Physikalische Korrespondenz 2005, 222, S. 31–48.
  • Selected topics in three-dimensional projective geometry, Chapter 1: Projectivities between primitive forms of one and two dimensions.
    Mathematisch-Physikalische Korrespondenz 2005, 223, S. 35–48.
  • Selected topics in three-dimensional projective geometry, Chapter 2: Projectivities in three-dimensional space.
    Mathematisch-Physikalische Korrespondenz 2006, 224, S. 33–48.
  • Selected topics in three-dimensional projective geometry, Chapter 3: Introduction to curves and surfaces in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2006, 225, S. 40–48.
  • Selected topics in three-dimensional projective geometry, Chapter 4: Surfaces of the second degree in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2006, 226, S. 20–39.
  • Selected topics in three-dimensional projective geometry, Chapter 5: Involutory collineations and polarities in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2006, 227, S. 23–39.
  • Selected topics in three-dimensional projective geometry, Chapter 6: Foundations of three-dimensional Euclidean and non-Euclidean geometry.
    Mathematisch-Physikalische Korrespondenz 2007, 228, S. 26-40.
  • Selected topics in three-dimensional projective geometry, Chapter 7: Fundamental notions of line geometry in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2007, 229, S. 30–40.
  • Selected topics in three-dimensional projective geometry, Chapter 8: Linear complexes of lines in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2007, 230, S. 42–56.
  • Selected topics in three-dimensional projective geometry, Chapter 9: Linear congruences of lines in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2007, 231, S. 25–40.
  • Selected topics in three-dimensional projective geometry, Chapter 10: Families of lines in three-dimensional projective space generated by collineations between bundles and fields.
    Mathematisch-Physikalische Korrespondenz 2008, 232, S. 25–48.
  • Selected topics in three-dimensional projective geometry, Chapter 11: Twisted cubics and cubic developables in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2008, 233, S. 32–48.
  • Selected topics in three-dimensional projective geometry, Chapter 12: Collineations in three-dimensional projective space: Tetrahedral Quadratic Complexes.
    Mathematisch-Physikalische Korrespondenz 2008, 234, S. 45–56.
  • Selected topics in three-dimensional projective geometry, Chapter 13a: Non-Euclidean, affine and Euclidean properties of linear families of lines in three-dimensional projective space, Part I.
    Mathematisch-Physikalische Korrespondenz 2008, 235, S. 38–48.
  • Selected topics in three-dimensional projective geometry, Chapter 13b: Non-Euclidean, affine and Euclidean properties of linear families of lines in three-dimensional projective space, Part II.
    Mathematisch-Physikalische Korrespondenz 2009, 236, S. 29–47.
  • Selected topics in three-dimensional projective geometry, Chapter 14: Reciprocal linear complexes in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2009, 237, S. 32–40.
  • Selected topics in three-dimensional projective geometry, Chapter 15: Linear manifolds of linear complexes in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2009, 238, S. 26–40.
  • Selected topics in three-dimensional projective geometry, Chapter 16: Two-dimensional manifolds of linear complexes and their induced polarities in three-dimensional projective space.
    Mathematisch-Physikalische Korrespondenz 2009, 239, S. 40–48.
  • Selected topics in three-dimensional projective geometry, Chapter 17: The five-dimensional linear manifold of linear complexes.
    Mathematisch-Physikalische Korrespondenz 2010, 240, S. 33–40.
  • Selected topics in three-dimensional projective geometry, Chapter 18: Fundamental Complexes.
    Mathematisch-Physikalische Korrespondenz 2010, 241, S. 31–40.